Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
40101.0000Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.200516174779
450510.9994Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. Resistance to macrolide, lincosamide and streptogramin antibiotics is due to alteration of the target site or detoxification of the antibiotic. Postranscriptional methylation of 23S ribosomal rRNA confers resistance to macrolide (M), lincosamide (L) and streptogramin (S) B-type antibiotics, the so-called MLSB phenotype. Several classes of rRNA methylases conferring resistance to MLSB antibiotics have been characterized in Gram-positive cocci, in Bacillus spp, and in strains of actinomycetes producing erythromycin. The enzymes catalyze N6-dimethylation of an adenine residue situated in a highly conserved region of prokaryotic 23S rRNA. In this review, we compare the amino acid sequences of the rRNA methylases and analyze the codon usage in the corresponding erm (erythromycin resistance methylase) genes. The homology detected at the protein level is consistent with the notion that an ancestor of the erm genes was implicated in erythromycin resistance in a producing strain. However, the rRNA methylases of producers and non-producers present substantial sequence diversity. In Gram-positive bacteria the preferential codon usage in the erm genes reflects the guanosine plus cytosine content of the chromosome of the host. These observations suggest that the presence of erm genes in these micro-organisms is ancient. By contrast, it would appear that enterobacteria have acquired only recently an rRNA methylase gene of the ermB class from a Gram-positive coccus since the genes isolated in Escherichia coli and in Gram-positive cocci are highly homologous (homology greater than 98%) and present a codon usage typical of the latter micro-organisms. As opposed to the MLSB phenotype which results from a single biochemical mechanism, inactivation of structurally related antibiotics of the MLS group involves synthesis of various other enzymes. In enterobacteria, resistance to erythromycin and oleandomycin is due to production of erythromycin esterases which hydrolyze the lactone ring of the 14-membered macrolides. We recently reported the nucleotide sequence of ereA and ereB (erythromycin resistance esterase) genes which encode erythromycin esterases type I and II, respectively. The amino acid sequences of the two isozymes do not exhibit statistically significant homology. Analysis of codon usage in both genes suggests that esterase type I is indigenous to E. coli, whereas the type II enzyme was acquired by E. coli from a phylogenetically remote micro-organism. Inactivation of lincosamides, first reported in staphylococci and lactobacilli of animal origin, was also recently detected in Gram-positive cocci isolated from humans.(ABSTRACT TRUNCATED AT 400 WORDS)19873326871
596220.9993Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.201222845886
522730.9993Mutation at the position 2058 of the 23S rRNA as a cause of macrolide resistance in Streptococcus pyogenes. BACKGROUND: In streptococci, three macrolide resistance determinants (erm(B), erm(TR) and mef(A)) have been found. In addition, certain mutations at the ribosomal 23S RNA can cause resistance to macrolides. Mutation at the position 2058 of the 23S rRNA of the Streptococcus pyogenes as a cause of macrolide resistance has not been described before. METHODS: Antibiotic resistance determinations for the clinical S. pyogenes strain ni4277 were done using the agar dilution technique. Macrolide resistance mechanisms were studied by PCR and sequencing. All six rRNA operons were amplified using operon-specific PCR. The PCR products were partially sequenced in order to resolve the sequences of different 23S rRNA genes. RESULTS: One clinical isolate of S. pyogenes carrying an adenine to guanine mutation at the position 2058 of the 23S rRNA in five of the six possible rRNA genes but having no other known macrolide resistance determinants is described. The strain was highly resistant to macrolides and azalides, having erythromycin and azithromycin MICs > 256 microgram/ml. It was resistant to lincosamides (clindamycin MIC 16 microgram/ml) and also MIC values for ketolides were clearly elevated. The MIC for telithromycin was 16 microgram/ml. CONCLUSION: In this clinical S. pyogenes strain, a mutation at the position 2058 was detected. No other macrolide resistance-causing determinants were detected. This mutation is known to cause macrolide resistance in other bacteria. We can conclude that this mutation was the most probable cause of macrolide, lincosamide and ketolide resistance in this strain.200415128458
449840.9993A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated.200818024520
450150.9993A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group.19921339256
596360.9993Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli.19989503630
449770.9993Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm.201931448060
40080.9993The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Genes conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics via ribosomal modification are widespread in bacteria, including clinical isolates and MLS-producing actinomycetes. Such erm-type genes encode enzymes that mono- or dimethylate residue A-2058 of 23S rRNA. The different phenotypes resulting from monomethylation (MLS-I phenotype, conferred by erm type I genes) or dimethylation (MLS-II phenotype due to erm type II genes) have been characterized by introducing tlrD or ermE, respectively, into an MLS-sensitive derivative of Streptomyces lividans TK21. This strain (designated OS456) was generated by specific replacement of the endogenous resistance genes lrm and mgt. The MLS-I phenotype is characterized by high-level resistance to lincomycin with only marginal resistance to macrolides such as chalcomycin or tylosin, whereas the MLS-II phenotype involves high-level resistance to all MLS drugs. Mono- and dimethylated ribosomes were introduced into a cell-free protein-synthesizing system prepared from S. lividans and compared with unmodified particles in their response to antibiotics. There was no simple correlation between the relative potencies of MLS drugs at the level of the target site (i.e., the ribosome) and their antibacterial activities expressed as MICs.19968851574
450390.9992Evolution and transfer of aminoglycoside resistance genes under natural conditions. 3'-Aminoglycoside phosphotransferases [APH(3')] were chosen as a model to study the evolution and the transfer of aminoglycoside resistance genes under natural conditions. Comparison of the amino acid sequences of APH(3') enzymes from transposons Tn903 (type I) and Tn5 (type II) detected in Gram-negative bacteria, from the Gram-positive Staphylococcus and Streptococcus (type III), from the butirosin-producing Bacillus circulans (type IV) and from a neomycin-producing Streptomyces fradiae (type V) indicate that they have diverged from a common ancestor. These structural data support the hypothesis that the antibiotic-producing strains were the source of certain resistance determinants. We have shown that kanamycin resistance in Campylobacter coli BM2509 was due to the synthesis of an APH(3')-III, an enzyme not detected previously in a Gram-negative bacterium. The genes encoding APH(3')-III in Streptococcus and Campylobacter are identical. These findings constitute evidence for a recent in-vivo transfer of DNA between Gram-positive and Gram-negative bacteria.19863027020
6258100.9992Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. High-level quinolone resistance in Enterococcus faecium was associated with mutations in both gyrA and parC genes in 10 of 11 resistant strains. On low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis.199910103206
5961110.9992Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences.201121281423
4487120.9992Detecting mutations that confer oxazolidinone resistance in gram-positive bacteria. Resistance to oxazolidinone antibiotics, including linezolid, in Gram-positive bacteria is mediated by single-nucleotide polymorphisms (SNPs) in the 23S ribosomal RNA. A G2576U change (encoded by a G2576T mutation in the rRNA genes) is found in most resistant clinical isolates of enterococci and staphylococci; a variety of changes have been found in resistant mutants selected in vitro. Pyrosequencing can be used to detect SNPs known to confer oxazolidinone resistance, including the G2576T change. Most bacteria have more than one rRNA gene copy and Pyrosequencing can also be used for allele quantification, i.e., to estimate the proportions of mutant vs wild-type alleles. The number of mutated rRNA gene copies correlates roughly with the level of oxazolidinone resistance displayed by resistant isolates. This chapter summarizes the Pyrosequencing assays that have been developed in our laboratory for analyzing oxazolidinone-resistant enterococci and staphylococci.200717185761
4500130.9992Mosaic tetracycline resistance genes encoding ribosomal protection proteins. First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.201627494928
3593140.9992Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities. The occurrence of d-Ala : d-Lac ligase genes homologous to glycopeptide resistance vanA was studied in samples of agricultural (n=9) and garden (n=3) soil by culture-independent methods. Cloning and sequencing of nested degenerate PCR products obtained from soil DNA revealed the occurrence of d-Ala : d-Ala ligase genes unrelated to vanA. In order to enhance detection of vanA-homologous genes, a third PCR step was added using primers targeting vanA in soil Paenibacillus. Sequencing of 25 clones obtained by this method allowed recovery of 23 novel sequences having 86-100% identity with vanA in enterococci. Such sequences were recovered from all agricultural samples as well as from two garden samples with no history of organic fertilization. The results indicated that soil is a rich and assorted reservoir of genes closely related to those conferring glycopeptide resistance in clinical bacteria.200616734783
457150.9992Molecular characterization of the genes encoding DNA gyrase and topoisomerase IV of Listeria monocytogenes. The genes encoding subunits A and B of DNA gyrase and subunits C and E of topoisomerase IV of Listeria monocytogenes, gyrA, gyrB, parC and parE, respectively, were cloned and sequenced. Compared with the sequences of quinolone-susceptible bacteria, such as Escherichia coli and Bacillus subtilis, the quinolone resistance-determining region (QRDR) of DNA gyrase subunit A was altered; the deduced amino acid sequences revealed the substitutions Ser-84-->Thr and Asp/Glu-88-->Phe, two amino acid variations at hot spots, commonly associated with resistance to quinolones. No relevant divergences from QRDR consensus sequences were observed in GyrB or both topoisomerase IV subunits. Thus, it could be argued that the amino acid substitutions in GyrA would explain the intrinsic resistance of L. monocytogenes to nalidixic acid. In order to analyse the actual role of the GyrA alterations, a plasmid-encoded gyrA allele was mutated and transformed into L. monocytogenes. However, these heterodiploid strains were not affected in their resistance to nalidixic acid. The effects of the mutant plasmids on ciprofloxacin and sparfloxacin susceptibility were only modest.200212039883
6256160.9992Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance. Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested.201525262036
6269170.9992Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Mutations in rRNA genes (rrn) that confer resistance to ribosomal inhibitors are typically recessive or weakly codominant and have been mostly reported for clinical strains of pathogens possessing only one or two rrn operons, such as Helicobacter pylori and Mycobacterium spp. An analysis of the genome sequences of several members of the Chlamydiaceae revealed that these obligate intracellular bacteria harbor only one or two sets of rRNA genes. To study the contribution of rRNA mutations to the emergence of drug resistance in the Chlamydiaceae, we used the sensitivities of Chlamydia trachomatis L2 (two rrn operons) and Chlamydophila psittaci 6BC (one rrn operon) to the aminoglycoside spectinomycin as a model. Confluent cell monolayers were infected in a plaque assay with about 10(8) wild-type infectious particles and then treated with the antibiotic. After a 2-week incubation time, plaques formed by spontaneous spectinomycin-resistant (Spc(r)) mutants appeared with a frequency of 5 x 10(-5) for C. psittaci 6BC. No Spc(r) mutants were isolated for C. trachomatis L2, although the frequencies of rifampin resistance were in the same range for both strains (i.e., 10(-7)). The risk of emergence of Chlamydia strains resistant to tetracyclines and macrolides, the ribosomal drugs currently used to treat chlamydial infections, is discussed.200515980362
5970180.9992DNA microarray for detection of macrolide resistance genes. A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria.200616723563
5960190.999216S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Most Helicobacter pylori strains are susceptible to tetracycline, an antibiotic commonly used for the eradication of H. pylori. However, an increase in incidence of tetracycline resistance in H. pylori has recently been reported. Here the mechanism of tetracycline resistance of the first Dutch tetracycline-resistant (Tet(r)) H. pylori isolate (strain 181) is investigated. Twelve genes were selected from the genome sequences of H. pylori strains 26695 and J99 as potential candidate genes, based on their homology with tetracycline resistance genes in other bacteria. With the exception of the two 16S rRNA genes, none of the other putative tetracycline resistance genes was able to transfer tetracycline resistance. Genetic transformation of the Tet(s) strain 26695 with smaller overlapping PCR fragments of the 16S rRNA genes of strain 181, revealed that a 361-bp fragment that spanned nucleotides 711 to 1071 was sufficient to transfer resistance. Sequence analysis of the 16S rRNA genes of the Tet(r) strain 181, the Tet(s) strain 26695, and four Tet(r) 26695 transformants showed that a single triple-base-pair substitution, AGA(926-928)-->TTC, was present within this 361-bp fragment. This triple-base-pair substitution, present in both copies of the 16S rRNA gene of all our Tet(r) H. pylori transformants, resulted in an increased MIC of tetracycline that was identical to that for the Tet(r) strain 181.200212183259