# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3996 | 0 | 1.0000 | Antibiotic resistance gene spread due to manure application on agricultural fields. The usage of antibiotics in animal husbandry has promoted the development and abundance of antibiotic resistance in farm environments. Manure has become a reservoir of resistant bacteria and antibiotic compounds, and its application to agricultural soils is assumed to significantly increase antibiotic resistance genes and selection of resistant bacterial populations in soil. The genome location of resistance genes is likely to shift towards mobile genetic elements such as broad-host-range plasmids, integrons, and transposable elements. Horizontal transfer of these elements to bacteria adapted to soil or other habitats supports their environmental transmission independent of the original host. The human exposure to soil-borne resistance has yet to be determined, but is likely to be severely underestimated. | 2011 | 21546307 |
| 3997 | 1 | 0.9999 | Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance. | 2011 | 21359229 |
| 3993 | 2 | 0.9999 | Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. | 2015 | 26356096 |
| 3999 | 3 | 0.9999 | Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth's surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority. | 2022 | 35453275 |
| 3998 | 4 | 0.9999 | Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately. | 2021 | 33123928 |
| 4102 | 5 | 0.9999 | Forces shaping the antibiotic resistome. Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance. | 2014 | 25213620 |
| 6466 | 6 | 0.9999 | The antibiotic resistome: gene flow in environments, animals and human beings. The antibiotic resistance is natural in bacteria and predates the human use of antibiotics. Numerous antibiotic resistance genes (ARGs) have been discovered to confer resistance to a wide range of antibiotics. The ARGs in natural environments are highly integrated and tightly regulated in specific bacterial metabolic networks. However, the antibiotic selection pressure conferred by the use of antibiotics in both human medicine and agriculture practice leads to a significant increase of antibiotic resistance and a steady accumulation of ARGs in bacteria. In this review, we summarized, with an emphasis on an ecological point of view, the important research progress regarding the collective ARGs (antibiotic resistome) in bacterial communities of natural environments, human and animals, i.e., in the one health settings.We propose that the resistance gene flow in nature is "from the natural environments" and "to the natural environments"; human and animals, as intermediate recipients and disseminators, contribute greatly to such a resistance gene "circulation." | 2017 | 28500429 |
| 4027 | 7 | 0.9999 | Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens. | 2022 | 35332832 |
| 6464 | 8 | 0.9999 | The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed. | 2024 | 38599270 |
| 4032 | 9 | 0.9999 | Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations? Environments without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chromosomal and are part of the core genes of the species that harbor them. Some of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal pathogens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobilization of antibiotic resistance genes among different biomes. Bacteriophages have characteristics that make them suitable vectors between different biomes, and as well for transferring genes from biome to biome. Recent metagenomic studies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different microbiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far more relevant than previously thought. Our hypothesis is that bacteriophages might be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environments such as waters and soils, to animal and human microbiomes. This commentary concentrates on the potential importance of bacteriophages in transferring resistance genes from the environment to human and animal body microbiomes, but there is no doubt that transduction occurs also in body microbiomes. | 2013 | 24195016 |
| 7481 | 10 | 0.9999 | The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE: The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature. | 2016 | 27613679 |
| 7433 | 11 | 0.9999 | Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. The increasing demand for animal-derived foods has led to intensive and large-scale livestock production with the consequent formation of large amounts of manure. Livestock manure is widely used in agricultural practices as soil fertilizer worldwide. However, several antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria are frequently detected in manure and manure-amended soils. This review explores the role of manure in the persistence and dissemination of ARGs in the environment, analyzes the procedures used to decrease antimicrobial resistance in manure and the potential impact of manure application in public health. We highlight that manure shows unique features as a hotspot for antimicrobial gene dissemination by horizontal transfer events: richness in nutrients, a high abundance and diversity of bacteria populations and antibiotic residues that may exert a selective pressure on bacteria and trigger gene mobilization; reduction methodologies are able to reduce the concentrations of some, but not all, antimicrobials and microorganisms. Conjugation events are often seen in the manure environment, even after composting. Antibiotic resistance is considered a growing threat to human, animal and environmental health. Therefore, it is crucial to reduce the amount of antimicrobials and the load of antimicrobial resistant bacteria that end up in soil. | 2020 | 32823495 |
| 6479 | 12 | 0.9999 | Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent. | 2009 | 19398507 |
| 3994 | 13 | 0.9999 | Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome. | 2021 | 34970233 |
| 7479 | 14 | 0.9999 | Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome. | 2023 | 37754684 |
| 4025 | 15 | 0.9999 | Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. | 2016 | 27183895 |
| 3989 | 16 | 0.9999 | Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO(2) emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area. | 2021 | 34073520 |
| 3990 | 17 | 0.9999 | Environmental pollution by antibiotics and by antibiotic resistance determinants. Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. | 2009 | 19560847 |
| 4028 | 18 | 0.9999 | Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens. | 2020 | 32143027 |
| 6462 | 19 | 0.9999 | Human health implications of clinically relevant bacteria in wastewater habitats. The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse. | 2013 | 23508533 |