# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3975 | 0 | 1.0000 | The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community. | 2021 | 33899656 |
| 4027 | 1 | 0.9999 | Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens. | 2022 | 35332832 |
| 6704 | 2 | 0.9999 | Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis. | 2023 | 38818274 |
| 3976 | 3 | 0.9999 | A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a "reservoir" of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research. | 2022 | 36386682 |
| 3999 | 4 | 0.9999 | Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth's surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority. | 2022 | 35453275 |
| 4025 | 5 | 0.9999 | Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. | 2016 | 27183895 |
| 6639 | 6 | 0.9999 | Environmental Spread of Antibiotic Resistance. Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here. | 2021 | 34071771 |
| 6555 | 7 | 0.9999 | Bacteriophages as antibiotic resistance genes carriers in agro-food systems. Antibiotic resistance genes (ARGs) are a global health concern. Antibiotic resistance occurs naturally, but misuse of antibiotics in humans and animals is accelerating the process of antibiotic resistance emergency, which has been aggravated by exposure to molecules of antibiotics present in clinical and agricultural settings and the engagement of many countries in water reuse especially in Middle East and North Africa region. Bacteriophages have the potential to be significant actors in ARGs transmission through the transduction process. These viruses have been detected along with ARGs in non impacted habitats and in anthropogenic impacted environments like wastewater, reclaimed water and manure amended soil as well as minimally processed food and ready to eat vegetables. The ubiquity of bacteriophages and their persistence in the environment raises concern about their involvement in ARGs transmission among different biomes and the generation of pathogenic-resistant bacteria that pose a great threat to human health. The aim of this review is to give an overview of the potential role of bacteriophages in the dissemination and the transfer of ARGs to pathogens in food production and processing and the consequent contribution to antibiotic resistance transmission through faecal oral route carrying ARGs to our dishes. | 2021 | 32916015 |
| 3995 | 8 | 0.9999 | Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed. | 2014 | 24484530 |
| 4007 | 9 | 0.9999 | Detecting horizontal gene transfer among microbiota: an innovative pipeline for identifying co-shared genes within the mobilome through advanced comparative analysis. Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation. | 2024 | 38099617 |
| 4028 | 10 | 0.9999 | Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens. | 2020 | 32143027 |
| 3982 | 11 | 0.9999 | Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment. | 2020 | 32717638 |
| 4003 | 12 | 0.9999 | Antibiotic resistance: Global health crisis and metagenomics. Antibiotic resistance is a global problem which affects human health. The imprudent use of antibiotics (medicine, agriculture, aquaculture, and food industry) has resulted in the broader dissemination of resistance. Urban wastewater & sewage treatment plants act as the hotspot for the widespread of antimicrobial resistance. Natural environment also plays an important role in the dissemination of resistance. Mapping of antibiotic resistance genes (ARGS) in environment is essential for mitigating antimicrobial resistance (AMR) widespread. Therefore, the review article emphasizes on the application of metagenomics for the surveillance of antimicrobial resistance. Metagenomics is the next generation tool which is being used for cataloging the resistome of diverse environments. We summarize the different metagenomic tools that can be used for mining of ARGs and acquired AMR present in the metagenomic data. Also, we recommend application of targeted sequencing/ capture platform for mapping of resistome with higher specificity and selectivity. | 2021 | 33732632 |
| 4026 | 13 | 0.9999 | Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. The human gastrointestinal tract is home to a complex and dynamic community of microorganisms known as gut microbiota, which provide the host with important metabolic, signaling, and immunomodulatory functions. Both the commensal and pathogenic members of the gut microbiome serve as reservoirs of antimicrobial-resistance genes (ARG), which can cause potential health threats to the host and can transfer the ARGs to the susceptible microbes and into the environment. Antimicrobial resistance is becoming a major burden on human health and is widely recognized as a global challenge. The diversity and abundance of ARGs in the gut microbiome are variable and depend on the exposure to healthcare-associated antibiotics, usage of antibiotics in veterinary and agriculture, and the migration of the population. The transfer frequency of the ARGs through horizontal gene transfer (HGT) with the help of mobile genetic elements (MGEs) like plasmids, transposons, or phages is much higher among bacteria living in the GI tract compared to other microbial ecosystems. HGT in gut bacteria is facilitated through multiple gene transfer mechanisms, including transformation, conjugation, transduction, and vesicle fusion. It is the need of the hour to implement strict policies to limit indiscriminate antibiotic usage when needed. Developing rapid diagnostic tests for resistance determination and alternatives to antibiotics like vaccination, probiotics, and bacteriophage therapy should have the highest priority in the research and development sectors. Collective actions for sustainable development against resistant pathogens by promoting endogenous gut microbial growth and diversity through interdisciplinary research and findings are key to overcoming the current antimicrobial resistance crisis. | 2022 | 36280316 |
| 4004 | 14 | 0.9999 | Diverse Distribution of Resistomes in the Human and Environmental Microbiomes. The routine therapeutic use of antibiotics has caused resistance genes to be disseminated across microbial populations. In particular, bacterial strains having antibiotic resistance genes are frequently observed in the human microbiome. Moreover, multidrug-resistant pathogens are now widely spread, threatening public health. Such genes are transferred and spread among bacteria even in different environments. Advances in high throughput sequencing technology and computational algorithms have accelerated investigation into antibiotic resistance genes of bacteria. Such studies have revealed that the antibiotic resistance genes are located close to the mobility-associated genes, which promotes their dissemination. An increasing level of information on genomic sequences of resistome should expedite research on drug-resistance in our body and environment, thereby contributing to the development of public health policy. In this review, the high prevalence of antibiotic resistance genes and their exchange in the human and environmental microbiome is discussed with respect to the genomic contents. The relationships among diverse resistomes, related bacterial species, and the antibiotics are reviewed. In addition, recent advances in bioinformatics approaches to investigate such relationships are discussed. | 2018 | 30532649 |
| 3993 | 15 | 0.9999 | Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. | 2015 | 26356096 |
| 4093 | 16 | 0.9999 | Revisiting Antibiotic Resistance Spreading in Wastewater Treatment Plants - Bacteriophages as a Much Neglected Potential Transmission Vehicle. The spread of antibiotic resistance is currently a major threat to health that humanity is facing today. Novel multidrug and pandrug resistant bacteria are reported on a yearly basis, while the development of novel antibiotics is lacking. Focus to limit the spread of antibiotic resistance by reducing the usage of antibiotics in health care, veterinary applications, and meat production, have been implemented, limiting the exposure of pathogens to antibiotics, thus lowering the selection of resistant strains. Despite these attempts, the global resistance has increased significantly. A recent area of focus has been to limit the spread of resistance through wastewater treatment plants (WWTPs), serving as huge reservoirs of microbes and resistance genes. While being able to quite efficiently reduce the presence of resistant bacteria entering any of the final products of WWTPs (e.g., effluent water and sludge), the presence of resistance genes in other formats (mobile genetic elements, bacteriophages) has mainly been ignored. Recent data stress the importance of transduction in WWTPs as a mediator of resistance spread. Here we examine the current literature in the role of WWTPs as reservoirs and hotspots of antibiotic resistance with a specific focus on bacteriophages as mediators of genetic exchange. | 2017 | 29209304 |
| 3985 | 17 | 0.9999 | The scourge of antibiotic resistance: the important role of the environment. Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms. | 2013 | 23723195 |
| 4097 | 18 | 0.9999 | Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues. | 2021 | 33877574 |
| 4096 | 19 | 0.9999 | Environmental hotspots for antibiotic resistance genes. Bacterial resistance toward broad-spectrum antibiotics has become a major concern in recent years. The threat posed by the infectious bacteria and the pace with which resistance determinants are transmitted needs to be deciphered. Soil and water contain unique and diverse microbial communities as well as pools of naturally occurring antibiotics resistant genes. Overuse of antibiotics along with poor sanitary practices expose these indigenous microbial communities to antibiotic resistance genes from other bacteria and accelerate the process of acquisition and dissemination. Clinical settings, where most antibiotics are prescribed, are hypothesized to serve as a major hotspot. The predisposition of the surrounding environments to a pool of antibiotic-resistant bacteria facilitates rapid antibiotic resistance among the indigenous microbiota in the soil, water, and clinical environments via horizontal gene transfer. This provides favorable conditions for the development of more multidrug-resistant pathogens. Limitations in detecting gene transfer mechanisms have likely left us underestimating the role played by the surrounding environmental hotspots in the emergence of multidrug-resistant bacteria. This review aims to identify the major drivers responsible for the spread of antibiotic resistance and hotspots responsible for the acquisition of antibiotic resistance genes. | 2021 | 34180594 |