# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3970 | 0 | 1.0000 | Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally. | 2022 | 35028843 |
| 4188 | 1 | 0.9999 | Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria. | 2012 | 22849275 |
| 4190 | 2 | 0.9999 | Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry. | 2014 | 24705326 |
| 3990 | 3 | 0.9999 | Environmental pollution by antibiotics and by antibiotic resistance determinants. Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. | 2009 | 19560847 |
| 6639 | 4 | 0.9999 | Environmental Spread of Antibiotic Resistance. Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here. | 2021 | 34071771 |
| 4194 | 5 | 0.9999 | Do nonclinical uses of antibiotics make a difference? An increasing range of antibacterial compounds is being used for nonclinical purposes, especially in the fields of animal husbandry and fish farming. As in human medicine, exposure to antibiotics has lead to the emergence of antibiotic-resistant bacteria in animal populations. The potential impact of antibiotic use in animals on human health and the management of clinical infections in humans is discussed in light of growing evidence to suggest that "new" resistance genes and multiresistant pathogens with increased pathogenicity are emerging in food animals as a direct consequence of antibiotic exposure. | 1994 | 7963441 |
| 6680 | 6 | 0.9999 | Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Aquaculture is a rapidly growing industry that currently accounts for almost half of the fish used for human consumption worldwide. Intensive and semi-intensive practices are used to produce large stocks of fish, but frequent disease outbreaks occur, and the use of antimicrobials has become a customary practice to control them. The selective pressure exerted by these drugs, which are usually present at sub-therapeutic levels for prolonged periods in the water and the sediments, provides ideal conditions for the emergence and selection of resistant bacterial strains and stimulates horizontal gene transfer. It is now widely recognized that the passage of antimicrobial resistance genes and resistant bacteria from aquatic to terrestrial animal husbandry and to the human environment and vice versa can have detrimental effects on both human and animal health and on aquatic ecosystems. A global effort must be made to cease antimicrobial overuse in aquaculture and encourage stakeholders to adopt other disease-prevention measures. Shaping a new path is crucial to containing the increasing threat of antimicrobial resistance. | 2018 | 29567094 |
| 3992 | 7 | 0.9999 | Resistance in the environment. Antibiotics, disinfectants and bacteria resistant to them have been detected in environmental compartments such as waste water, surface water, ground water, sediments and soils. Antibiotics are released into the environment after their use in medicine, veterinary medicine and their employment as growth promoters in animal husbandry, fish farming and other fields. There is increasing concern about the growing resistance of pathogenic bacteria in the environment, and their ecotoxic effects. Increasingly, antibiotic resistance is seen as an ecological problem. This includes both the ecology of resistance genes and that of the resistant bacteria themselves. Little is known about the effects of subinhibitory concentrations of antibiotics and disinfectants on environmental bacteria, especially with respect to resistance. According to the present state of our knowledge, the impact on the frequency of resistance transfer by antibacterials present in the environment is questionable. The input of resistant bacteria into the environment seems to be an important source of resistance in the environment. The possible impact of resistant bacteria on the environment is not yet known. Further research into these issues is warranted. | 2004 | 15215223 |
| 4055 | 8 | 0.9999 | Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. | 2013 | 23711078 |
| 4189 | 9 | 0.9999 | Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life. | 2006 | 17094710 |
| 4124 | 10 | 0.9999 | A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals. In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations. | 2002 | 12385693 |
| 3971 | 11 | 0.9999 | Monitoring and identifying antibiotic resistance mechanisms in bacteria. Sub-therapeutic administration of antibiotics to animals is under intense scrutiny because they contribute to the dissemination of antibiotic-resistant bacteria into the food chain. Studies suggest that there is a link between the agricultural use of antibiotics and antibiotic-resistant human infections. Antibiotic-resistant organisms from animal and human wastes reenter the human and animal populations through a number of pathways including natural waters, irrigation water, drinking water, and vegetables and foods. Antibiotic usage in the United States for animal production (disease prevention and growth promotion) is estimated to be 18 million pounds annually. As much as 25 to 75% of the antibiotics administered to feedlot animals are excreted unaltered in feces. Because about 180 million dry tons of livestock and poultry waste is generated annually in the United States, it is not surprising that animal-derived antibiotic-resistant organisms are found contaminating groundwater, surface water, and food crops. It is extremely important to clearly understand the molecular mechanisms that could potentially cause lateral or horizontal gene transfer of antibiotic resistance genes among bacteria. Once the mechanisms and magnitude of resistance gene transfer are clearly understood and quantified, strategies can be instituted to reduce the potential for dissemination of these genes. | 2003 | 12710483 |
| 4215 | 12 | 0.9999 | Antibiotic usage in animals: impact on bacterial resistance and public health. Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine. | 1999 | 10551432 |
| 6712 | 13 | 0.9998 | Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine. The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial-human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed. | 2025 | 40732727 |
| 4187 | 14 | 0.9998 | Human health consequences of use of antimicrobial agents in aquaculture. Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health. | 2009 | 19772389 |
| 3984 | 15 | 0.9998 | Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance. | 2023 | 36851059 |
| 4192 | 16 | 0.9998 | Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. | 2013 | 23805136 |
| 4053 | 17 | 0.9998 | Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. The concern over antibiotic-resistant bacteria producing human infections that are difficult to treat has led to a proliferation of studies in recent years investigating resistance in livestock, food products, the environment and people, as well as in the mechanisms of transfer of the genetic elements of resistance between bacteria, and the routes, or risk pathways, by which the spread of resistance might occur. The possibility of transfer of resistant genetic elements between bacteria in mixed populations adds many additional and complex potential routes of spread. There is now considerable evidence that transfer of antimicrobial resistance from food-producing animals to humans directly via the food chain is a likely route of spread. The application of animal wastes to farmland and subsequent leaching into watercourses has also been shown to lead to many potential, but less well-documented, pathways for spread. Often, however, where contamination of water sources, processed foods, and other environmental sites is concerned, specific routes of circulation are unclear and may well involve human sources of contamination. Examination of water sources in particular may be difficult due to dilution and their natural flow. Also, as meat is comparatively easy to examine, and is frequently suspected of being a source of spread, there is some bias in favour of studying this vehicle. Such complexities mean that, with the evidence currently available, it is not possible to prioritise the importance of potential risk pathways and circulation routes. | 2012 | 22849279 |
| 4095 | 18 | 0.9998 | Antimicrobial resistance: more than 70 years of war between humans and bacteria. Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article). | 2020 | 32954887 |
| 3986 | 19 | 0.9998 | Water environments: metal-tolerant and antibiotic-resistant bacteria. The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics. | 2020 | 32173770 |