Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
395401.0000Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. The influence of a mission hospital on the evolution of antibiotic resistance in coliform bacteria from a remote antibiotic-free Xhosa community and environment is described.1976984780
395610.9997Antimicrobial resistance spread in aquatic environments. The increased use of antimicrobials in farming, together with the practice of raw sewage discharge into receiving waters, has resulted in a significant increase in the numbers of antibiotic resistant bacteria present in aquatic environments. The role of this environment to act, not only as a reservoir of clinical resistance genes, but also as a medium for the spread and evolution of resistance genes and their vectors, is discussed.19938335494
395520.9997Antibiotic resistance in aquatic bacteria. Antibiotics are used extensively in medicine and agriculture, and some of the resistant bacteria which develop find their way into lakes and rivers. It was decided to use antibiotic resistance as a convenient marker to study gene transfer in the natural environment. However, a preliminary survey of Windermere showed that there was a higher incidence of resistance in the bacteria isolated from the lake water than from the sewage effluent discharging into the lake. This unexpected result was followed by the more surprising finding that the incidence of resistance was even higher in the bacterial populations of two remote upland tarns. The results have important implications for those involved in examining the spread of antibiotic resistance into remote environments. Some of the technical problems in determining the antibiotic resistance profiles of aquatic bacteria are discussed.19863542934
398530.9997The scourge of antibiotic resistance: the important role of the environment. Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.201323723195
395740.9997Antibiotic-Resistant Bacteria in Clams-A Study on Mussels in the River Rhine. Bacterial infections have been treated effectively by antibiotics since the discovery of penicillin in 1928. A worldwide increase in the use of antibiotics led to the emergence of antibiotic resistant strains in almost all bacterial pathogens, which complicates the treatment of infectious diseases. Antibiotic-resistant bacteria play an important role in increasing the risk associated with the usage of surface waters (e.g., irrigation, recreation) and the spread of the resistance genes. Many studies show that important pathogenic antibiotic-resistant bacteria can enter the environment by the discharge of sewage treatment plants and combined sewage overflow events. Mussels have successfully been used as bio-indicators of heavy metals, chemicals and parasites; they may also be efficient bio-indicators for viruses and bacteria. In this study an influence of the discharge of a sewage treatment plant could be shown in regard to the presence of E. coli in higher concentrations in the mussels downstream the treatment plant. Antibiotic-resistant bacteria, resistant against one or two classes of antibiotics and relevance for human health could be detected in the mussels at different sampling sites of the river Rhine. No multidrug-resistant bacteria could be isolated from the mussels, although they were found in samples of the surrounding water body.202134066054
414750.9996Lack of evidence that DNA in antibiotic preparations is a source of antibiotic resistance genes in bacteria from animal or human sources. Although DNA encoding antibiotic resistance has been discovered in antibiotic preparations, its significance for the development of antibiotic resistance in bacteria is unknown. No phylogenetic evidence was obtained for recent horizontal transfer of antibiotic resistance genes from antibiotic-producing organisms to bacteria from human or animal sources.200415273135
398660.9996Water environments: metal-tolerant and antibiotic-resistant bacteria. The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics.202032173770
656870.9996Antibiotic resistance genes in water environment. The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.200919130050
334280.9996Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance.201323370726
388590.9996Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.201424821495
4146100.9996Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.202236358142
4055110.9996Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.201323711078
3990120.9996Environmental pollution by antibiotics and by antibiotic resistance determinants. Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations.200919560847
4148130.9996Plasmids in the environment. Bacterial plasmids existed in bacteria before the antibiotic era but their presence was brought into prominence by the use of antibiotics which selected for antibiotic resistant strains. Subsequently, the range of genes carried on plasmids was shown to extend far beyond those coding for antibiotic resistance. Any consideration of plasmids in the environment, therefore, must include all plasmids whether or not they are genetically linked with antibiotic resistance. Antibiotic resistant bacteria may be found in the environment either by contamination with excreta from man and animals in which the strains were selected, or by their selection within the environment by antibiotics synthesized in situ or reaching the environment in an undegraded form in sewage from man and animals, or from industry. Other agents, also contaminating the environment, exert a selective pressure such as heavy metals in industrial effluents which select for metal resistance. This paper reviews the incidences and role of plasmids in various habitats including natural waters, soil, pastures, farm wastes, and human sewage from both hospitalised and other populations. Aspects of plasmid ecology, their biological role, and the transmissibility of genetic material between bacteria within the environment are considered. Two recent studies in Bristol, UK, are reported. The first was a genetic study on Escherichia coli isolates from calf slurry. Various DNA probes were used to determine the extent of gene exchange between the various serotypes within the natural environment. The second was a preliminary study to determine the stability of a recombinant plasmid, in a wild strain of Escherichia coli of pig origin, after its release into a semi-contained farm situation. It is now recognized that plasmids are widely distributed in bacterial populations in terrestrial and aquatic environments. Many have been detected by their carriage of genes coding for antibiotic or heavy metal resistance. Others, mainly cryptic in nature, have been demonstrated by plasmid profile studies on isolates from various habitats. Plasmids were shown to be present in a relatively few bacteria deposited in culture collections prior to the antibiotic era. Subsequently, the increased prevalence of R plasmids in bacteria in most ecosystems were due mainly to the selective pressure imposed by the use of antibiotics. This pressure may have been exerted either in the environment in which the strains were found or elsewhere, the environment subsequently being contaminated by antibiotic resistant bacteria.(ABSTRACT TRUNCATED AT 400 WORDS)19883074480
4034140.9996Environmental and clinical antibiotic resistomes, same only different. The history of antibiotic use in the clinic is one of initial efficacy followed inevitably by the emergence of resistance. Often this resistance is the result of the capture and mobilization of genes that have their origins in environmental reservoirs. Both antibiotic production and resistance are ancient and widely distributed among microbes in the environment. This deep reservoir of resistance offers the opportunity for gene flow into susceptible disease-causing bacteria. Not all resistance genes are equally successfully mobilized, and some dominate in the clinic. The differences and similarities in resistance mechanisms and associated genes among environments reveal a complex interplay between gene capture and mobilization that requires study of gene diversity and gene product function to fully understand the breadth and depth of resistance and the risk to human health.201931330416
3998150.9996Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately.202133123928
3883160.9996The dissemination of antibiotic resistance in various environmental objects (Russia). Environmental objects (surface and groundwater, soil, bottom sediments, wastewater) are reservoirs in which large-scale multidirectional exchange of determinants of antibiotic resistance between clinical strains and natural bacteria takes place. The review discusses the results of studies on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) isolated from environmental objects (water, soil, sewage, permafrost) of the Russian Federation. Despite the relevance of the topic, the number of available publications examining the resistomes of Russian water bodies and soils is small. The most studied environmental objects are surface waters (rivers, lakes), permafrost deposits. Soil resistomes are less studied. Data on ARG and ARB in wastewater are the least covered in publications. In most of the studies, antibiotic resistance of isolated pure bacterial cultures was determined phenotypically. A significant number of publications are devoted to the resistance of natural isolates of Vibrio cholerae, since the lower reaches of the Volga and Don rivers are endemic to cholera. Molecular genetic methods were used in a small number of studies. Geographically, the south of the European part of Russia is the most studied. There are also publications on the distribution of ARG in water bodies of Siberia and the Russian Far East. There are practically no publications on such developed regions of Russia as the center and northwest of the European part of Russia. The territory of the country is very large, anthropogenic and natural factors in its various regions vary significantly; therefore, it seems interesting to combine all available data in one work.202032935217
6557170.9996Antibiotics and antibiotic resistance in water environments. Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable.200818534838
3991180.9996Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Biofilm-forming bacteria are ubiquitous in the environment and also include biofilm-forming pathogens. Environmental biofilms may form a reservoir for risk genes and may act as a challenge for human health. Examples of the health relevance of biofilms are the increase in antibiotic resistant bacteria hosted in biofilms in hospital and environment and consequently the interaction of these bacteria with human cells, e.g. in the immune system. Although data concerning the occurrence and spread of resistant bacteria within hospital care units are available, the fate of these bacteria in the environment and especially in the aquatic environment has barely been investigated. Once antibiotic resistant bacteria have entered the environment, a back coupling by ingestion or other possible entry into the host has to be prevented. Therefore a strategy to investigate paths of entry, accumulation and spread of resistant bacteria in environmental compartments has been developed using quantitative determination of genetic resistance determinants. Additionally a bacterial bioassay assessed bioeffectivity thresholds of low antibiotic concentrations. This approach enables an evaluation of the potential of contaminated waters to exert a selection pressure on bacterial communities and thus promote the persistence of resistant organisms. Completed with an indicator system for the identification of sources of multiresistant bacteria a concept for monitoring and evaluation of environmental compartments with respect to their potential of antibiotic resistance dissemination is suggested.200616705607
4054190.9996Ecological impact of antibiotic use in animals on different complex microflora: environment. Different means of interaction between microecological systems in different animal hosts (including humans) and the environment may occur during the transfer of resistant bacteria and their resistance genes. Spread of resistance takes place in different ways with respect to clonal spread of resistance strains by the spread of wide host range plasmids and translocatable elements. Commensals in ecosystems have a special significance and a pronounced capacity for acquisition and transfer of resistance genes as with Enterococcus faecium and Escherichia coli in the gut flora or Pseudomonas spp. in aquatic environments. The route of transmission from animals to humans by meat products is well established. Other routes via water and food plants (vegetables) have been investigated less, although resistance genes transfer in aquatic environments as evidenced from sequence comparison of such genes (e.g. tetR, floR in Salmonella typhimurium DT104). Whether this is due to rare but important transfer events or whether there is a more frequent exchange in aquatic or terrestrial environments needs further elucidation.200010794954