# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3953 | 0 | 1.0000 | Into the wild: dissemination of antibiotic resistance determinants via a species recovery program. Management strategies associated with captive breeding of endangered species can establish opportunities for transfer of pathogens and genetic elements between human and animal microbiomes. The class 1 integron is a mobile genetic element associated with clinical antibiotic resistance in gram-negative bacteria. We examined the gut microbiota of endangered brush-tail rock wallabies Petrogale penicillata to determine if they carried class 1 integrons. No integrons were detected in 65 animals from five wild populations. In contrast, class 1 integrons were detected in 48% of fecal samples from captive wallabies. The integrons contained diverse cassette arrays that encoded resistance to streptomycin, spectinomycin, and trimethoprim. Evidence suggested that captive wallabies had acquired typical class 1 integrons on a number of independent occasions, and had done so in the absence of strong selection afforded by antibiotic therapy. Sufficient numbers of bacteria containing diverse class 1 integrons must have been present in the general environment occupied by the wallabies to account for this acquisition. The captive wallabies have now been released, in an attempt to bolster wild populations of the species. Consequently, they can potentially spread resistance integrons into wild wallabies and into new environments. This finding highlights the potential for genes and pathogens from human sources to be acquired during captive breeding and to be unwittingly spread to other populations. | 2013 | 23717399 |
| 4659 | 1 | 0.9996 | Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. Class 1 integrons carried by pathogens have acquired over 100 different gene cassettes encoding resistance to antimicrobial compounds, helping to generate a crisis in the management of infectious disease. It is presumed that these cassettes originated from environmental bacteria, but exchange of gene cassettes has surprisingly never been demonstrated outside laboratory or clinical contexts. We aimed to identify a natural environment where such exchanges might occur, and determine the phylogenetic range of participating integrons. Here we examine freshwater biofilms and show that families of cassettes conferring resistance to quaternary ammonium compounds (qac) are found on class 1 integrons identical to those from clinical contexts, on sequence variants of class 1 integrons only known from natural environments, and on other diverse classes of integrons only known from the chromosomes of soil and freshwater Proteobacteria. We conclude that gene cassettes might be readily shared between different integron classes found in environmental, commensal and pathogenic bacteria. This suggests that class 1 integrons in pathogens have access to a vast pool of gene cassettes, any of which could confer a phenotype of clinical relevance. Exploration of this resource might allow identification of resistance or virulence genes before they become part of multi-drug-resistant human pathogens. | 2009 | 19459951 |
| 4658 | 2 | 0.9996 | Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era." | 2006 | 16885440 |
| 4604 | 3 | 0.9996 | Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Gene transfer within bacterial communities has been recognized as a major contributor in the recent evolution of antibiotic resistance on a global scale. The linked strA-strB genes, which encode streptomycin-inactivating enzymes, are distributed worldwide and confer streptomycin resistance in at least 17 genera of gram-negative bacteria. Nucleotide sequence analyses suggest that strA-strB have been recently disseminated. In bacterial isolates from humans and animals, strA-strB are often linked with the suIII sulfonamide-resistance gene and are encoded on broad-host-range nonconjugative plasmids. In bacterial isolates from plants, strA-strB are encoded on the Tn3-type transposon Tn5393 which is generally borne on conjugative plasmids. The wide distribution of the strA-strB genes in the environment suggests that gene transfer events between human, animal, and plant-associated bacteria have occurred. Although the usage of streptomycin in clinical medicine and animal husbandry has diminished, the persistence of strA-strB in bacterial populations implies that factors other than direct antibiotic selection are involved in maintenance of these genes. | 1996 | 9147689 |
| 3915 | 4 | 0.9996 | Phylogenetic signature of lateral exchange of genes for antibiotic production and resistance among bacteria highlights a pattern of global transmission of pathogens between humans and livestock. The exchange of bacterial virulence factors driven by lateral gene transfer (LGT) can help indicate possible bacterial transmission among different hosts. Specifically, overlaying the phylogenetic signal of LGT among bacteria onto the distribution of respective isolation sources (hosts) can indicate patterns of transmission among these hosts. Here, we apply this approach towards a better understanding of patterns of bacterial transmission between humans and livestock. We utilize comparative genomics to trace patterns of LGT for an 11-gene operon responsible for the production of the antibiotic nisin and infer transmission of bacteria among respective host species. A total of 147 bacterial genomes obtained from NCBI were determined to contain the complete operon. Isolated from human, porcine and bovine hosts, these genomes represented six Streptococcus and one Staphylococcus species. Phylogenetic analyses of the operon sequences revealed a signature of frequent and recent lateral gene transfer that indicated extensive bacterial transmission between humans and pigs. For 11 isolates, we detected a Tn916-like transposon inserted into the operon. The transposon contained the tetM gene (tetracycline resistance) and additional phylogenetic analyses indicated transmission among human and animal hosts. The bacteria possessing the nisin operon and transposon were isolated from hosts distributed globally. These findings possibly reflect both the globalization of the food industry and an increasingly mobile and expanding human population. In addition to concerns regarding zoonosis, these findings also highlight the potential threat to livestock worldwide due to reverse zoonosis. | 2018 | 29631053 |
| 3942 | 5 | 0.9996 | Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. The rapid emergence of antibiotic-resistant (ART) pathogens is a major threat to public health. While the surfacing of ART food-borne pathogens is alarming, the magnitude of the antibiotic resistance (AR) gene pool in food-borne commensal microbes is yet to be revealed. Incidence of ART commensals in selected retail food products was examined in this study. The presence of 10(2)-10(7) CFU of ART bacteria per gram of foods in many samples, particularly in ready-to-eat, 'healthy' food items, indicates that the ART bacteria are abundant in the food chain. AR-encoding genes were detected in ART isolates, and Streptococcus thermophilus was found to be a major host for AR genes in cheese microbiota. Lactococcus lactis and Leuconostoc sp. isolates were also found carrying AR genes. The data indicate that food could be an important avenue for ART bacterial evolution and dissemination. AR-encoding plasmids from several food-borne commensals were transmitted to Streptococcus mutans via natural gene transformation under laboratory conditions, suggesting the possible transfer of AR genes from food commensals to human residential bacteria via horizontal gene transfer. | 2006 | 16445749 |
| 4519 | 6 | 0.9996 | Antimicrobial Drug Resistance in Fish Pathogens. Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in Penaeus monodon larvae caused by Vibrio harveyi resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera Aeromonas, Yersinia, Photobacterium, Edwardsiella, and Vibrio. Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens (Aeromonas spp., Yersinia spp., Photobacterium spp., Edwardsiella spp., and Vibrio spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens (Salmonella enterica serotypes, Escherichia coli, and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments. | 2018 | 29372680 |
| 3869 | 7 | 0.9996 | Functional metagenomics reveals previously unrecognized diversity of antibiotic resistance genes in gulls. Wildlife may facilitate the spread of antibiotic resistance (AR) between human-dominated habitats and the surrounding environment. Here, we use functional metagenomics to survey the diversity and genomic context of AR genes in gulls. Using this approach, we found a variety of AR genes not previously detected in gulls and wildlife, including class A and C β-lactamases as well as six tetracycline resistance gene types. An analysis of the flanking sequences indicates that most of these genes are present in Enterobacteriaceae and various Gram-positive bacteria. In addition to finding known gene types, we detected 31 previously undescribed AR genes. These undescribed genes include one most similar to an uncharacterized gene in Verrucomicrobium and another to a putative DNA repair protein in Lactobacillus. Overall, the study more than doubled the number of clinically relevant AR gene types known to be carried by gulls or by wildlife in general. Together with the propensity of gulls to visit human-dominated habitats, this high diversity of AR gene types suggests that gulls could facilitate the spread of AR. | 2011 | 22347872 |
| 4148 | 8 | 0.9996 | Plasmids in the environment. Bacterial plasmids existed in bacteria before the antibiotic era but their presence was brought into prominence by the use of antibiotics which selected for antibiotic resistant strains. Subsequently, the range of genes carried on plasmids was shown to extend far beyond those coding for antibiotic resistance. Any consideration of plasmids in the environment, therefore, must include all plasmids whether or not they are genetically linked with antibiotic resistance. Antibiotic resistant bacteria may be found in the environment either by contamination with excreta from man and animals in which the strains were selected, or by their selection within the environment by antibiotics synthesized in situ or reaching the environment in an undegraded form in sewage from man and animals, or from industry. Other agents, also contaminating the environment, exert a selective pressure such as heavy metals in industrial effluents which select for metal resistance. This paper reviews the incidences and role of plasmids in various habitats including natural waters, soil, pastures, farm wastes, and human sewage from both hospitalised and other populations. Aspects of plasmid ecology, their biological role, and the transmissibility of genetic material between bacteria within the environment are considered. Two recent studies in Bristol, UK, are reported. The first was a genetic study on Escherichia coli isolates from calf slurry. Various DNA probes were used to determine the extent of gene exchange between the various serotypes within the natural environment. The second was a preliminary study to determine the stability of a recombinant plasmid, in a wild strain of Escherichia coli of pig origin, after its release into a semi-contained farm situation. It is now recognized that plasmids are widely distributed in bacterial populations in terrestrial and aquatic environments. Many have been detected by their carriage of genes coding for antibiotic or heavy metal resistance. Others, mainly cryptic in nature, have been demonstrated by plasmid profile studies on isolates from various habitats. Plasmids were shown to be present in a relatively few bacteria deposited in culture collections prior to the antibiotic era. Subsequently, the increased prevalence of R plasmids in bacteria in most ecosystems were due mainly to the selective pressure imposed by the use of antibiotics. This pressure may have been exerted either in the environment in which the strains were found or elsewhere, the environment subsequently being contaminated by antibiotic resistant bacteria.(ABSTRACT TRUNCATED AT 400 WORDS) | 1988 | 3074480 |
| 4660 | 9 | 0.9996 | Recovery of new integron classes from environmental DNA. Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed. | 2001 | 11166996 |
| 5005 | 10 | 0.9996 | Plasmid-mediated resistance is going wild. Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments. | 2018 | 30243983 |
| 3922 | 11 | 0.9996 | Mobile Antimicrobial Resistance Genes in Probiotics. Even though people worldwide tend to consume probiotic products for their beneficial health effects on a daily basis, recently, concerns were outlined regarding the uptake and potential intestinal colonisation of the bacteria that they carry. These bacteria are capable of executing horizontal gene transfer (HGT) which facilitates the movement of various genes, including antimicrobial resistance genes (ARGs), among the donor and recipient bacterial populations. Within our study, 47 shotgun sequencing datasets deriving from various probiotic samples (isolated strains and metagenomes) were bioinformatically analysed. We detected more than 70 ARGs, out of which rpoB mutants conferring resistance to rifampicin, tet(W/N/W) and potentially extended-spectrum beta-lactamase (ESBL) coding TEM-116 were the most common. Numerous ARGs were associated with integrated mobile genetic elements, plasmids or phages promoting the HGT. Our findings raise clinical and public health concerns as the consumption of probiotic products may lead to the transfer of ARGs to human gut bacteria. | 2021 | 34827225 |
| 3356 | 12 | 0.9996 | Conjugative multiple-antibiotic resistance plasmids in Escherichia coli isolated from environmental waters contaminated by human faecal wastes. AIMS: To better understand the involvement of faecal contamination in the dissemination of antibiotic resistance genes, we investigated the genetic supports of resistances in nine multi-resistant Escherichia coli strains originating from human faecal contamination, and isolated from three different aquatic environments used for producing drinking water. METHODS AND RESULTS: Seven strains harboured at least one large plasmid that we have characterized (size, antibiotic resistance patterns, incompatibility group, capacity of autotransfer, presence of integron). Most of these plasmids were conjugative and carried numerous resistances. One of the plasmids studied, belonging to the IncP incompatibility group, was able to transfer by conjugation to Pseudomonas fluorescens and Aeromonas sp. Only two of the plasmids we studied carried class 1 and/or 2 integron(s). CONCLUSIONS: Conjugative plasmids isolated from multi-resistant E. coli strains explained most of the resistances of their host strains and probably contribute to the spread of antibiotic resistance genes coming from human faecal contamination. SIGNIFICANCE AND IMPACT OF THE STUDY: These results highlight the key role played by plasmids in the multi-resistance phenotype of faecal bacteria and the diversity of these genetic structures. Contaminated water, especially accidentally contaminated drinking water, could be a path back to humans for these plasmids. | 2015 | 25387599 |
| 3343 | 13 | 0.9996 | Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. | 2014 | 25520706 |
| 3248 | 14 | 0.9996 | Geographical resistome profiling in the honeybee microbiome reveals resistance gene transfer conferred by mobilizable plasmids. BACKGROUND: The spread of antibiotic resistance genes (ARGs) has been of global concern as one of the greatest environmental threats. The gut microbiome of animals has been found to be a large reservoir of ARGs, which is also an indicator of the environmental antibiotic spectrum. The conserved microbiota makes the honeybee a tractable and confined ecosystem for studying the maintenance and transfer of ARGs across gut bacteria. Although it has been found that honeybee gut bacteria harbor diverse sets of ARGs, the influences of environmental variables and the mechanism driving their distribution remain unclear. RESULTS: We characterized the gut resistome of two closely related honeybee species, Apis cerana and Apis mellifera, domesticated in 14 geographic locations across China. The composition of the ARGs was more associated with host species rather than with geographical distribution, and A. mellifera had a higher content of ARGs in the gut. There was a moderate geographic pattern of resistome distribution, and several core ARG groups were found to be prevalent among A. cerana samples. These shared genes were mainly carried by the honeybee-specific gut members Gilliamella and Snodgrassella. Transferrable ARGs were frequently detected in honeybee guts, and the load was much higher in A. mellifera samples. Genomic loci of the bee gut symbionts containing a streptomycin resistance gene cluster were nearly identical to those of the broad-host-range IncQ plasmid, a proficient DNA delivery system in the environment. By in vitro conjugation experiments, we confirmed that the mobilizable plasmids could be transferred between honeybee gut symbionts by conjugation. Moreover, "satellite plasmids" with fragmented genes were identified in the integrated regions of different symbionts from multiple areas. CONCLUSIONS: Our study illustrates that the gut microbiota of different honeybee hosts varied in their antibiotic resistance structure, highlighting the role of the bee microbiome as a potential bioindicator and disseminator of antibiotic resistance. The difference in domestication history is highly influential in the structuring of the bee gut resistome. Notably, the evolution of plasmid-mediated antibiotic resistance is likely to promote the probability of its persistence and dissemination. Video Abstract. | 2022 | 35501925 |
| 4518 | 15 | 0.9996 | Resistome, Mobilome and Virulome Analysis of Shewanella algae and Vibrio spp. Strains Isolated in Italian Aquaculture Centers. Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest. | 2020 | 32326629 |
| 3448 | 16 | 0.9996 | Antimicrobial resistance genes and associated mobile genetic elements in Lactobacillales from various sources. Lactobacillales are commonly used in food products and as probiotics in animal and human medicine. Despite being generally recognized as safe, lactic acid bacteria may harbor a variety of antimicrobial resistance genes (ARGs), which may be transferable to human or veterinary pathogens, thus, may pose veterinary and public health concerns. This study investigates the resistome of Lactobacillales. A total of 4,286 whole-genome sequences were retrieved from NCBI RefSeq database. We screened ARGs in whole genome sequences and assessed if they are transmissible by plasmid transfer or by linkage to integrative mobile genetic elements. In the database, 335 strains were found to carry at least one ARG, and 194 strains carried at least one potentially transferable ARG. The most prevalent transferable ARG were tetM and tetW conferring antibiotic resistance to tetracycline. This study highlights the importance of the One Health concept by demonstrating the potential for Lactobacillales, commonly used in food products, to serve as reservoirs and vectors for ARGs. | 2023 | 38045025 |
| 3909 | 17 | 0.9996 | Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes. | 2021 | 33967971 |
| 3597 | 18 | 0.9996 | Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria. | 2001 | 11157217 |
| 3408 | 19 | 0.9996 | The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to beta-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system. | 2004 | 15318485 |