# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3940 | 0 | 1.0000 | Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Industrial farms are unique, human-created ecosystems that provide the perfect setting for the development and dissemination of antibiotic resistance. Agricultural antibiotic use amplifies naturally occurring resistance mechanisms from soil ecologies, promoting their spread and sharing with other bacteria, including those poised to become endemic within hospital environments. To better understand the role of enterococci in the movement of antibiotic resistance from farm to table to clinic, we characterized over 300 isolates of Enterococcus cultured from raw chicken meat purchased at U.S. supermarkets by the Consumers Union in 2013. Enterococcus faecalis and Enterococcus faecium were the predominant species found, and antimicrobial susceptibility testing uncovered striking levels of resistance to medically important antibiotic classes, particularly from classes approved by the FDA for use in animal production. While nearly all isolates were resistant to at least one drug, bacteria from meat labeled as raised without antibiotics had fewer resistances, particularly for E. faecium Whole-genome sequencing of 92 isolates revealed that both commensal- and clinical-isolate-like enterococcal strains were associated with chicken meat, including isolates bearing important resistance-conferring elements and virulence factors. The ability of enterococci to persist in the food system positions them as vehicles to move resistance genes from the industrial farm ecosystem into more human-proximal ecologies.IMPORTANCE Bacteria that contaminate food can serve as a conduit for moving drug resistance genes from farm to table to clinic. Our results show that chicken meat-associated isolates of Enterococcus are often multidrug resistant, closely related to pathogenic lineages, and harbor worrisome virulence factors. These drug-resistant agricultural isolates could thus represent important stepping stones in the evolution of enterococci into drug-resistant human pathogens. Although significant efforts have been made over the past few years to reduce the agricultural use of antibiotics, continued assessment of agricultural practices, including the roles of processing plants, shared breeding flocks, and probiotics as sources for resistance spread, is needed in order to slow the evolution of antibiotic resistance. Because antibiotic resistance is a global problem, global policies are needed to address this threat. Additional measures must be taken to mitigate the development and spread of antibiotic resistance elements from farms to clinics throughout the world. | 2019 | 31471308 |
| 3941 | 1 | 0.9999 | Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective. | 2023 | 37106925 |
| 6632 | 2 | 0.9999 | Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013-2017. Antimicrobial resistance is a major public health concern, and food systems are a crucial point in the epidemiology of these resistances. Among antimicrobials, critically important ones are therapeutic drugs that should be primarily safeguarded to allow successful outcomes against important bacterial infections in humans. The most important source of antimicrobial resistance has been recognized in the inappropriate use of antimicrobials in human and animal medicine, with farming being a critical stage. Products of animal origin are the link between animal and humans and can contribute to the spread of antimicrobial resistance, in particular through bacteria such as Enterobacteriaceae, commonly present in both animals' gut and food. Salmonella is an important member of this bacterial family due to its pathogenicity, its noteworthy prevalence and the frequent detection of resistance genes in different isolates. In the present systematic review, the distribution of antimicrobial resistance determinants among Salmonella enterica serovars in pigs, cattle and poultry production was investigated in the European context. A comprehensive literature search was carried out in three different databases, and 7955 papers were identified as relevant. After the different steps of the review process, 31 papers were considered eligible for data extraction to gain insight about sources and reservoirs for such genes. Results suggest that despite the increasing attention directed toward antimicrobial resistance in animal production, a wide plethora of genes still exist and further actions should be undertaken to face this challenge. | 2019 | 31442714 |
| 4989 | 3 | 0.9999 | A closer look on the variety and abundance of the faecal resistome of wild boar. Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach. | 2022 | 34710519 |
| 3900 | 4 | 0.9999 | Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ. | 2020 | 32838793 |
| 3950 | 5 | 0.9999 | Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Intensive animal farming emits to the environment very high concentrations of bioaerosol, mainly composed of microorganisms, including antibiotics resistant strains, and their derivatives. Poland is a significant producer of poultry and swine in Europe; Ukraine is located in the immediate vicinity of Poland and the EU. Thus, the review focuses on the presence of potentially pathogenic and antimicrobial-resistant zoonotic bacteria and antimicrobial genes in the environment of farms and food of animal origin in Poland and Ukraine. Existing data confirms presence of these bacteria in the food animal origin chain environment in both countries. However, it is difficult to compare the scale of multidrug-resistant bacteria (e.g. MRSA, ESBL) dissemination in Poland and Ukraine with other EU countries due to lack of more extensive studies and large-scale monitoring in these two countries. A series of studies concerning resistance of pathogenic bacteria isolated from livestock environment have been published in Poland but usually on single farms with a very limited number of samples, and without a genotypic drug resistance marking. From Ukraine are available only few reports, but also disturbing. The risk of antibiotic-resistant bacteria transmission does not only concern animal farming, but also other facilities of animal origin food supply chains, especially slaughterhouses. | 2022 | 34870776 |
| 3923 | 6 | 0.9999 | Antimicrobial resistance genes in raw milk for human consumption. The increasing prevalence of antimicrobial resistance (AMR) is a significant threat to global health. More and more multi-drug-resistant bacterial strains cause life-threatening infections and the death of thousands of people each year. Beyond disease control animals are often given antibiotics for growth promotion or increased feed efficiency, which further increase the chance of the development of multi-resistant strains. After the consumption of unprocessed animal products, these strains may meet the human bacteriota. Among the foodborne and the human populations, antimicrobial resistance genes (ARGs) may be shared by horizontal gene transfer. This study aims to test the presence of antimicrobial resistance genes in milk metagenome, investigate their genetic position and their linkage to mobile genetic elements. We have analyzed raw milk samples from public markets sold for human consumption. The milk samples contained genetic material from various bacterial species and the in-depth analysis uncovered the presence of several antimicrobial resistance genes. The samples contained complete ARGs influencing the effectiveness of acridine dye, cephalosporin, cephamycin, fluoroquinolone, penam, peptide antibiotics and tetracycline. One of the ARGs, PC1 beta-lactamase may also be a mobile element that facilitates the transfer of resistance genes to other bacteria, e.g. to the ones living in the human gut. | 2020 | 32366826 |
| 3897 | 7 | 0.9999 | The use of aminoglycosides in animals within the EU: development of resistance in animals and possible impact on human and animal health: a review. Aminoglycosides (AGs) are important antibacterial agents for the treatment of various infections in humans and animals. Following extensive use of AGs in humans, food-producing animals and companion animals, acquired resistance among human and animal pathogens and commensal bacteria has emerged. Acquired resistance occurs through several mechanisms, but enzymatic inactivation of AGs is the most common one. Resistance genes are often located on mobile genetic elements, facilitating their spread between different bacterial species and between animals and humans. AG resistance has been found in many different bacterial species, including those with zoonotic potential such as Salmonella spp., Campylobacter spp. and livestock-associated MRSA. The highest risk is anticipated from transfer of resistant enterococci or coliforms (Escherichia coli) since infections with these pathogens in humans would potentially be treated with AGs. There is evidence that the use of AGs in human and veterinary medicine is associated with the increased prevalence of resistance. The same resistance genes have been found in isolates from humans and animals. Evaluation of risk factors indicates that the probability of transmission of AG resistance from animals to humans through transfer of zoonotic or commensal foodborne bacteria and/or their mobile genetic elements can be regarded as high, although there are no quantitative data on the actual contribution of animals to AG resistance in human pathogens. Responsible use of AGs is of great importance in order to safeguard their clinical efficacy for human and veterinary medicine. | 2019 | 31002332 |
| 6626 | 8 | 0.9999 | Multidrug-resistant pathogens in the food supply. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world. | 2015 | 25621383 |
| 6627 | 9 | 0.9999 | Antibiotic resistance profiles on pathogenic bacteria in the Brazilian environments. The present study aimed to elaborate a review of multidrug-resistant (MDR) bacteria in soil, food, aquatic environments, cattle, poultry, and swine farms in Brazil. Initially, the literature database for published papers from 2012 to 2023 was Scientific Electronic Library Online (SciELO), U.S. National Library of Medicine (PubMed), and Google Scholar, through the descriptors: antimicrobial resistance, resistance profile, multidrug resistance, environmental bacteria, and pathogenic bacteria. The studies demonstrated the prevalence of pathogenic and resistant bacteria in environments that favor their rapid dissemination. Bacteria of medical importance, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio spp., were present in samples from animal farms and foods, including cheese and milk, urban aquatic environments, hospital effluents, and shrimp farms. Studies suggested that important bacteria have been disseminated through different niches with easy contact with humans, animals, and food, demonstrating the danger of the emergence of increasingly difficult conditions for treating and controlling these infections. Thus, better understanding and characterizing the resistance profiles of bacteria in these regions, mainly referring to MDR bacteria, can help develop solutions to prevent the progression of this public health problem. | 2023 | 37043091 |
| 4988 | 10 | 0.9999 | Oh, deer! How worried should we be about the diversity and abundance of the faecal resistome of red deer? The emergence of antimicrobial resistance (AMR) is a global threat to public health. Antimicrobials are used in animal production and human medicine, which contribute to the circulation of antibiotic resistance genes (ARGs) in the environment. Wildlife can be reservoirs of pathogens and resistant bacteria. Furthermore, anthropogenic pressure can influence their resistome. This work aimed to study the AMR of the faecal microbiome of red deer, one of the most important game species in Europe. To this end, a high-throughput qPCR approach was employed to screen a high number of ARGs and the antimicrobial susceptibility of indicator bacteria was determined. Several genes that confer resistance to different classes of antibiotics were identified, with the most abundant being tetracycline ARGs. Other genes were also present that are considered current and future threats to human health, and some of these were relatively abundant. Multidrug-resistant E. coli and Enterococcus spp. were isolated, although the overall level of antibiotic resistance was low. These results highlight the pressing need to know the origin and transmission of AMR in wildlife. Thus, and considering the One Health concept, studies such as this one shows the need for surveillance programs to prevent the spread of drug-resistant strains and ARGs. | 2022 | 35151727 |
| 3898 | 11 | 0.9999 | Enterococci as a One Health indicator of antimicrobial resistance. The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum. | 2024 | 38696839 |
| 6628 | 12 | 0.9999 | Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface. | 2019 | 31599545 |
| 3933 | 13 | 0.9999 | Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance. Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain that selects for AMR. Consumption of food represents a potential exposure route to AMR microbes and AMR genes (ARGs), which may be present in viable bacteria or on free DNA. Ready-to-eat (RTE) foods are of particular interest because they are eaten without further cooking, so AMR bacteria or ARGs that are present may be consumed intact. They also represent varied production systems (fresh produce, cooked meat, dairy, etc.). An evidence gap exists regarding the diversity and consumption of ARGs in RTE food, which this study begins to address. We sampled 1001 RTE products at retail sale in the UK, in proportion to their consumption by the UK population, using National Diet and Nutrition Survey data. Bacterial DNA content of sample extracts was assessed by 16S metabarcoding, and 256 samples were selected for metagenomic sequencing for identification of ARGs based on consumption and likely bacterial DNA content. A total of 477 unique ARGs were identified in the samples, including ARGs that may be involved in resistance to important antibiotics, such as colistin, fluoroquinolones, and carbapenems, although phenotypic AMR was not measured. Based on the incidence of ARGs in food types, ARGs are estimated to be present in a high proportion of average diets. ARGs were detected on almost all RTE food types tested (48 of 52), and some efflux pump genes are consumed in 97% of UK diets. | 2025 | 40871269 |
| 3939 | 14 | 0.9999 | Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. | 2014 | 24589430 |
| 3896 | 15 | 0.9999 | Antimicrobial resistance genes in bacteria from animal-based foods. Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic. | 2020 | 32762867 |
| 3943 | 16 | 0.9999 | Quinolone resistance in the food chain. Antimicrobials are used in pet animals and in animal husbandry for prophylactic and therapeutic reasons and also as growth promoters, causing selective pressure on bacteria of animal origin. The impact of quinolones or quinolone-resistant bacteria on the management of human infections may be associated with three different scenarios. (i) Quinolone-resistant zoonotic bacterial pathogens are selected and food is contaminated during slaughter and/or preparation. (ii) Quinolone-resistant bacteria non-pathogenic to humans are selected in the animal. When the contaminated food is ingested, the bacteria may transfer resistance determinants to other bacteria in the human gut (commensal and potential pathogens). And (iii) quinolones remain in residues of food products, which may allow the selection of antibiotic-resistant bacteria after the food is consumed. In this review, we analyse the abovementioned aspects, emphasising the molecular basis of quinolone resistance in Escherichia coli, Salmonella spp. and Campylobacter spp. | 2008 | 18308515 |
| 3951 | 17 | 0.9999 | Diversity and genetic lineages of environmental staphylococci: a surface water overview. Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria. | 2020 | 32949464 |
| 3932 | 18 | 0.9999 | Acquired antibiotic resistance: are we born with it? The rapid emergence of antibiotic resistance (AR) is a major public health concern. Recent findings on the prevalence of food-borne antibiotic-resistant (ART) commensal bacteria in ready-to-consume food products suggested that daily food consumption likely serves as a major avenue for dissemination of ART bacteria from the food chain to human hosts. To properly assess the impact of various factors, including the food chain, on AR development in hosts, it is important to determine the baseline of ART bacteria in the human gastrointestinal (GI) tract. We thus examined the gut microbiota of 16 infant subjects, from the newborn stage to 1 year of age, who fed on breast milk and/or infant formula during the early stages of development and had no prior exposure to antibiotics. Predominant bacterial populations resistant to several antibiotics and multiple resistance genes were found in the infant GI tracts within the first week of age. Several ART population transitions were also observed in the absence of antibiotic exposure and dietary changes. Representative AR gene pools including tet(M), ermB, sul2, and bla(TEM) were detected in infant subjects. Enterococcus spp., Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia coli/Shigella spp. were among the identified AR gene carriers. ART bacteria were not detected in the infant formula and infant foods examined, but small numbers of skin-associated ART bacteria were found in certain breast milk samples. The data suggest that the early development of AR in the human gut microbiota is independent of infants' exposure to antibiotics but is likely impacted by exposure to maternal and environmental microbes during and after delivery and that the ART population is significantly amplified within the host even in the absence of antibiotic selective pressure. | 2011 | 21821748 |
| 4551 | 19 | 0.9999 | Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including bla(NDM-5) in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE: Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns. | 2024 | 38376265 |