Evaluating the health risk of probiotic supplements from the perspective of antimicrobial resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
392501.0000Evaluating the health risk of probiotic supplements from the perspective of antimicrobial resistance. Antimicrobial resistance remains a public health threat. Probiotics harboring antimicrobial resistant genes (ARGs) have, in recent years, been considered a potential health risk. Studies conducted on probiotics from increasingly popular health supplements have raised the possibility of transmitting ARGs to commensals in the human gut, concomitantly establishing a reservoir of ARGs and risking acquisition by opportunistic pathogens. Building on our previous study that reported multiple antibiotic resistance in probiotics of health supplements, in this research, we have attempted to detect their ARGs that may account for resistant phenotypes. ARGs responsible for tetracycline, macrolide, aminoglycoside, and glycopeptide resistance were prevalent in probiotics. Through laboratory adaptive evolution studies, we also show that streptomycin-adapted probiotics gained resistance to erythromycin, tetracycline, and doxycycline more effectively than non-adapted ones. When co-incubated with Enterococcus faecalis, Escherichia coli, or Staphylococcus aureus on Caco-2 and/or HCT-116 cells, streptomycin resistance was transferred from the adapted probiotics to generate transconjugants at frequencies comparable to or higher than that of other studies conducted through filter mating. Consistently, ARGs conferring resistance to streptomycin (aadA) and erythromycin [erm(B)-1] were detected in E. coli and S. aureus transconjugants, respectively, after co-incubation with streptomycin-adapted probiotics on Caco-2 cells. aadA and erm(B)-1 were both detected in E. faecalis transconjugant after the same co-incubation on HCT-116 cells. Our data and future comparative genomics and metagenomics studies conducted on animal models and in healthy, immunocompromised, and/or antibiotic-treated human cohorts will contribute to a more comprehensive understanding of probiotic consumption, application, and safety. IMPORTANCE: Probiotics are becoming increasingly popular, with promising applications in food and medicine, but the risk of transferring ARGs to disease-causing bacteria has raised concerns. Our study detected ARGs in probiotics of health supplements conferring resistance to tetracycline, macrolide, aminoglycoside, and glycopeptide drugs. Streptomycin-adapted probiotics also gained resistance to other antibiotics more effectively than non-adapted ones. Importantly, we showed that streptomycin resistance could be transferred to other bacteria after co-incubation with probiotics on human intestinal cells. ARGs responsible for erythromycin and streptomycin resistance, which were initially absent in the recipient bacteria, were also detected in the transconjugants. Our data build the foundation for future studies that will be conducted on animal models and in humans and leveraging advanced metagenomics approaches to clarify the long-term health risk of probiotic consumption.202539655960
392310.9999Antimicrobial resistance genes in raw milk for human consumption. The increasing prevalence of antimicrobial resistance (AMR) is a significant threat to global health. More and more multi-drug-resistant bacterial strains cause life-threatening infections and the death of thousands of people each year. Beyond disease control animals are often given antibiotics for growth promotion or increased feed efficiency, which further increase the chance of the development of multi-resistant strains. After the consumption of unprocessed animal products, these strains may meet the human bacteriota. Among the foodborne and the human populations, antimicrobial resistance genes (ARGs) may be shared by horizontal gene transfer. This study aims to test the presence of antimicrobial resistance genes in milk metagenome, investigate their genetic position and their linkage to mobile genetic elements. We have analyzed raw milk samples from public markets sold for human consumption. The milk samples contained genetic material from various bacterial species and the in-depth analysis uncovered the presence of several antimicrobial resistance genes. The samples contained complete ARGs influencing the effectiveness of acridine dye, cephalosporin, cephamycin, fluoroquinolone, penam, peptide antibiotics and tetracycline. One of the ARGs, PC1 beta-lactamase may also be a mobile element that facilitates the transfer of resistance genes to other bacteria, e.g. to the ones living in the human gut.202032366826
393220.9999Acquired antibiotic resistance: are we born with it? The rapid emergence of antibiotic resistance (AR) is a major public health concern. Recent findings on the prevalence of food-borne antibiotic-resistant (ART) commensal bacteria in ready-to-consume food products suggested that daily food consumption likely serves as a major avenue for dissemination of ART bacteria from the food chain to human hosts. To properly assess the impact of various factors, including the food chain, on AR development in hosts, it is important to determine the baseline of ART bacteria in the human gastrointestinal (GI) tract. We thus examined the gut microbiota of 16 infant subjects, from the newborn stage to 1 year of age, who fed on breast milk and/or infant formula during the early stages of development and had no prior exposure to antibiotics. Predominant bacterial populations resistant to several antibiotics and multiple resistance genes were found in the infant GI tracts within the first week of age. Several ART population transitions were also observed in the absence of antibiotic exposure and dietary changes. Representative AR gene pools including tet(M), ermB, sul2, and bla(TEM) were detected in infant subjects. Enterococcus spp., Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia coli/Shigella spp. were among the identified AR gene carriers. ART bacteria were not detected in the infant formula and infant foods examined, but small numbers of skin-associated ART bacteria were found in certain breast milk samples. The data suggest that the early development of AR in the human gut microbiota is independent of infants' exposure to antibiotics but is likely impacted by exposure to maternal and environmental microbes during and after delivery and that the ART population is significantly amplified within the host even in the absence of antibiotic selective pressure.201121821748
393130.9998Commercial farmed swine harbour a variety of pathogenic bacteria and antimicrobial resistance genes. Introduction. The northern region of Thailand serves as a crucial area for swine production, contributing to the Thai community food supply. Previous studies have highlighted the presence of foodborne bacterial pathogens originating from swine farms in this region, posing a threat to both human and animal health.Gap statement. Multiple swine bacterial pathogens have been studied at a species level, but the distribution and co-occurrence of bacterial pathogens in agricultural swine has not been well established.Aim. Our study employed the intestinal scraping technique to directly examine the bacterial micro-organisms interacting with the swine host.Methodology. We used shotgun metagenomic sequencing to analyse the bacterial pathogens inhabiting the caecal microbiome of swine from five commercial farms in northern Thailand.Results. A variety of pathogenic and opportunistic bacteria were identified, including Escherichia coli, Clostridium botulinum, Staphylococcus aureus and the Corynebacterium genus. From a One Health perspective, these species are important foodborne and opportunistic pathogens in both humans and agricultural animals, making swine a critical pathogen reservoir that can cause illness in humans, especially farm workers. Additionally, the swine caecal microbiome contains commensal bacteria such as Bifidobacterium, Lactobacillus and Faecalibacterium, which are associated with normal physiology and feed utilization in healthy swine. Antimicrobial resistance genes were also detected in all samples, specifically conferring resistance to tetracycline and aminoglycosides, which have historically been used extensively in swine farming.Conclusion. The findings further support the need for improved sanitation standards in swine farms, and additional monitoring of agricultural animals and farm workers to reduce contamination and improved produce safety for human consumption.202438230911
394240.9998Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. The rapid emergence of antibiotic-resistant (ART) pathogens is a major threat to public health. While the surfacing of ART food-borne pathogens is alarming, the magnitude of the antibiotic resistance (AR) gene pool in food-borne commensal microbes is yet to be revealed. Incidence of ART commensals in selected retail food products was examined in this study. The presence of 10(2)-10(7) CFU of ART bacteria per gram of foods in many samples, particularly in ready-to-eat, 'healthy' food items, indicates that the ART bacteria are abundant in the food chain. AR-encoding genes were detected in ART isolates, and Streptococcus thermophilus was found to be a major host for AR genes in cheese microbiota. Lactococcus lactis and Leuconostoc sp. isolates were also found carrying AR genes. The data indicate that food could be an important avenue for ART bacterial evolution and dissemination. AR-encoding plasmids from several food-borne commensals were transmitted to Streptococcus mutans via natural gene transformation under laboratory conditions, suggesting the possible transfer of AR genes from food commensals to human residential bacteria via horizontal gene transfer.200616445749
314950.9998Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. Introduction: To consider the growing health issues caused by antibiotic resistance from a "one health" perspective, the contribution of meat production needs to be addressed. While antibiotic resistance is naturally present in microbial communities, the treatment of farm animals with antibiotics causes an increase in antibiotic resistance genes (ARG) in the gut microbiome. Pigs are among the most prevalent animals in agriculture; therefore, reducing the prevalence of antibiotic-resistant bacteria in the pig gut microbiome could reduce the spread of antibiotic resistance. Probiotics are often studied as a way to modulate the microbiome and are, therefore, an interesting way to potentially decrease antibiotic resistance. Methods: To assess the efficacy of a probiotic to reduce the prevalence of ARGs in the pig microbiome, six pigs received either treatment with antibiotics (tylvalosin), probiotics (Pediococcus acidilactici MA18/5M; Biopower(®) PA), or a combination of both. Their faeces and ileal digesta were collected and DNA was extracted for whole genome shotgun sequencing. The reads were compared with taxonomy and ARG databases to identify the taxa and resistance genes in the samples. Results: The results showed that the ARG profiles in the faeces of the antibiotic and combination treatments were similar, and both were different from the profiles of the probiotic treatment (p < 0.05). The effects of the treatments were different in the digesta and faeces. Many macrolide resistance genes were detected in a higher proportion in the microbiome of the pigs treated with antibiotics or the combination of probiotics and antibiotics. Resistance-carrying conjugative plasmids and horizontal transfer genes were also amplified in faeces samples for the antibiotic and combined treatments. There was no effect of treatment on the short chain fatty acid content in the digesta or the faeces. Conclusion: There is no positive effect of adding probiotics to an antibiotic treatment when these treatments are administered simultaneously.202438606356
464060.9998Genome analysis of probiotic bacteria for antibiotic resistance genes. To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.202234989942
392470.9998Antimicrobial resistance determinants in silage. Animal products may play a role in developing and spreading antimicrobial resistance in several ways. On the one hand, residues of antibiotics not adequately used in animal farming can enter the human body via food. However, resistant bacteria may also be present in animal products, which can transfer the antimicrobial resistance genes (ARG) to the bacteria in the consumer's body by horizontal gene transfer. As previous studies have shown that fermented foods have a meaningful ARG content, it is indicated that such genes may also be present in silage used as mass feed in the cattle sector. In our study, we aspired to answer what ARGs occur in silage and what mobility characteristics they have? For this purpose, we have analyzed bioinformatically 52 freely available deep sequenced silage samples from shotgun metagenome next-generation sequencing. A total of 16 perfect matched ARGs occurred 54 times in the samples. More than half of these ARGs are mobile because they can be linked to integrative mobile genetic elements, prophages or plasmids. Our results point to a neglected but substantial ARG source in the food chain.202235347213
392080.9998Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Antibiotic Resistance is a growing concern for public health and global economy. Lactic acid bacteria (LAB) involved in the production of dairy products and commonly present in the agro-zootechnical environment can act as reservoirs of antibiotic resistance genes, acquiring or transferring them to other microorganisms. The review focuses on LAB group of dairy origin (Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus and Weissella) and Bifidobacterium genus, considering its large use in dairy industry. We have analyzed data in the last 25 years, highlighting atypical resistance, genetic traits correlated to antibiotic resistance and their ability to be transmitted to other microorganisms; comparative analysis of resistomes was also considered. Differences were observed among wild strains isolated from different regions because of authorized antibiotic use. Commercial strains belonging to Lactobacillus, Streptococcus and Bifidobacterium currently used for industrial dairy products are frequently resistant to gentamycin, kanamycin, chloramphenicol together with tetracycline. The presence of resistant wild LAB in raw milk products has been significantly reduced as a result of worldwide restrictions on the use of antibiotics in animal husbandry. Transmissible resistances are still present in industrial cultures, despite the great effort of starter industries in the process control and the safety screening of commercial cultures.202235287818
391990.9998Detection of antibiotic resistance in probiotics of dietary supplements. BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.201526370532
3922100.9998Mobile Antimicrobial Resistance Genes in Probiotics. Even though people worldwide tend to consume probiotic products for their beneficial health effects on a daily basis, recently, concerns were outlined regarding the uptake and potential intestinal colonisation of the bacteria that they carry. These bacteria are capable of executing horizontal gene transfer (HGT) which facilitates the movement of various genes, including antimicrobial resistance genes (ARGs), among the donor and recipient bacterial populations. Within our study, 47 shotgun sequencing datasets deriving from various probiotic samples (isolated strains and metagenomes) were bioinformatically analysed. We detected more than 70 ARGs, out of which rpoB mutants conferring resistance to rifampicin, tet(W/N/W) and potentially extended-spectrum beta-lactamase (ESBL) coding TEM-116 were the most common. Numerous ARGs were associated with integrated mobile genetic elements, plasmids or phages promoting the HGT. Our findings raise clinical and public health concerns as the consumption of probiotic products may lead to the transfer of ARGs to human gut bacteria.202134827225
4639110.9998Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof.202337762186
3935120.9998Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. The use of antimicrobials in the food animal industry has caused an increased prevalence of antimicrobial-resistant bacteria and antimicrobial resistance genes, which can be transferred to the microbiota of humans through the food chain or the environment. To reduce the development and spread of antimicrobial resistance, restrictions on antimicrobial use in food animals have been implemented in different countries. We investigated the impact of an antimicrobial restriction intervention during two generations of pigs. Fecal samples were collected in five growth phases. The frequency of antimicrobial-resistant coliforms and antimicrobial-resistant bacteria or antimicrobial resistance genes was analyzed. No differences in the richness or abundance of antimicrobial-resistant coliforms or antimicrobial resistance genes were found when animals fed with or without prophylactic antimicrobials were compared. Withholding antimicrobial supplementation did not negatively affect weight gain in pigs. Withdrawal of prophylactic antimicrobial consumption during two generations of pigs was not enough to reduce the prevalence of antimicrobial resistance genes, as measured by richness and abundance markers. This study indicates that the fitness costs associated with bacterial carriage of some antimicrobial resistance genes are low.202134872396
4721130.9998Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. BACKGROUND: Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. RESULTS: In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. CONCLUSION: The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine.200919814790
3405140.9998Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%-85% of the erm gene diversity in the manures analyzed.201829346541
4674150.9998Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.201526147573
4581160.9998Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.201425408688
4214170.9998Antimicrobial usage and resistance in beef production. Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots, threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.201627999667
9919180.9998An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli. The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla(CTX-M1) We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies.IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.201728720731
3851190.9998Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. BACKGROUND: Drug-resistant fish pathogens can cause significant economic loss to fish farmers. Since 2012, florfenicol has become an approved drug for treating both septicemia and columnaris diseases in freshwater fish. Due to the limited drug options available for aquaculture, the impact of the therapeutical florfenicol treatment on the microbiota landscape as well as the resistome present in the aquaculture farm environment needs to be evaluated. RESULTS: Time-series metagenomic analyses were conducted to the aquatic microbiota present in the tank-based catfish production systems, in which catfish received standard therapeutic 10-day florfenicol treatment following the federal veterinary regulations. Results showed that the florfenicol treatment shifted the structure of the microbiota and reduced the biodiversity of it by acting as a strong stressor. Planctomycetes, Chloroflexi, and 13 other phyla were susceptible to the florfenicol treatment and their abundance was inhibited by the treatment. In contrast, the abundance of several bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia phyla increased. These bacteria with increased abundance either harbor florfenicol-resistant genes (FRGs) or had beneficial mutations. The florfenicol treatment promoted the proliferation of florfenicol-resistant genes. The copy number of phenicol-specific resistance genes as well as multiple classes of antibiotic-resistant genes (ARGs) exhibited strong correlations across different genetic exchange communities (p < 0.05), indicating the horizontal transfer of florfenicol-resistant genes among these bacterial species or genera. Florfenicol treatment also induced mutation-driven resistance. Significant changes in single-nucleotide polymorphism (SNP) allele frequencies were observed in membrane transporters, genes involved in recombination, and in genes with primary functions of a resistance phenotype. CONCLUSIONS: The therapeutical level of florfenicol treatment significantly altered the microbiome and resistome present in catfish tanks. Both intra-population and inter-population horizontal ARG transfer was observed, with the intra-population transfer being more common. The oxazolidinone/phenicol-resistant gene optrA was the most prevalent transferred ARG. In addition to horizontal gene transfer, bacteria could also acquire florfenicol resistance by regulating the innate efflux systems via mutations. The observations made by this study are of great importance for guiding the strategic use of florfenicol, thus preventing the formation, persistence, and spreading of florfenicol-resistant bacteria and resistance genes in aquaculture.201931818316