# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3909 | 0 | 1.0000 | Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes. | 2021 | 33967971 |
| 3902 | 1 | 0.9999 | Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. Antibiotic-resistant genes (ARGs) are regarded as emerging environmental pollutants and pose a serious health risk to the human population. Integrons are genetic elements that are involved in the spread of ARGs amongst bacterial species. They also act as reservoirs of these resistance traits, further contributing to the development of multi-drug resistance in several water-borne pathogens. Due to inter- and intra-species transfer, integrons are now commonly reported in important water-borne pathogens such as Vibrio, Campylobacter, Salmonella, Shigella, Escherichia coli and other opportunistic pathogens. These pathogens exhibit immense diversity in their resistance gene cassettes. The evolution of multiple novel and complex gene cassettes in integrons further suggests the selection and horizontal transfer of ARGs in multi-drug resistant bacteria. Thus, the detection and characterization of these integrons in water-borne pathogens, especially in epidemic and pandemic strains, is of the utmost importance. It will provide a framework in which health authorities can conduct improved surveillance of antibiotic resistance in our natural water bodies. Such a study will also be helpful in developing better strategies for the containment and cure of infections caused by these bacteria. | 2019 | 30990401 |
| 4054 | 2 | 0.9999 | Ecological impact of antibiotic use in animals on different complex microflora: environment. Different means of interaction between microecological systems in different animal hosts (including humans) and the environment may occur during the transfer of resistant bacteria and their resistance genes. Spread of resistance takes place in different ways with respect to clonal spread of resistance strains by the spread of wide host range plasmids and translocatable elements. Commensals in ecosystems have a special significance and a pronounced capacity for acquisition and transfer of resistance genes as with Enterococcus faecium and Escherichia coli in the gut flora or Pseudomonas spp. in aquatic environments. The route of transmission from animals to humans by meat products is well established. Other routes via water and food plants (vegetables) have been investigated less, although resistance genes transfer in aquatic environments as evidenced from sequence comparison of such genes (e.g. tetR, floR in Salmonella typhimurium DT104). Whether this is due to rare but important transfer events or whether there is a more frequent exchange in aquatic or terrestrial environments needs further elucidation. | 2000 | 10794954 |
| 3910 | 3 | 0.9999 | Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages. Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis. | 2024 | 38935220 |
| 4148 | 4 | 0.9999 | Plasmids in the environment. Bacterial plasmids existed in bacteria before the antibiotic era but their presence was brought into prominence by the use of antibiotics which selected for antibiotic resistant strains. Subsequently, the range of genes carried on plasmids was shown to extend far beyond those coding for antibiotic resistance. Any consideration of plasmids in the environment, therefore, must include all plasmids whether or not they are genetically linked with antibiotic resistance. Antibiotic resistant bacteria may be found in the environment either by contamination with excreta from man and animals in which the strains were selected, or by their selection within the environment by antibiotics synthesized in situ or reaching the environment in an undegraded form in sewage from man and animals, or from industry. Other agents, also contaminating the environment, exert a selective pressure such as heavy metals in industrial effluents which select for metal resistance. This paper reviews the incidences and role of plasmids in various habitats including natural waters, soil, pastures, farm wastes, and human sewage from both hospitalised and other populations. Aspects of plasmid ecology, their biological role, and the transmissibility of genetic material between bacteria within the environment are considered. Two recent studies in Bristol, UK, are reported. The first was a genetic study on Escherichia coli isolates from calf slurry. Various DNA probes were used to determine the extent of gene exchange between the various serotypes within the natural environment. The second was a preliminary study to determine the stability of a recombinant plasmid, in a wild strain of Escherichia coli of pig origin, after its release into a semi-contained farm situation. It is now recognized that plasmids are widely distributed in bacterial populations in terrestrial and aquatic environments. Many have been detected by their carriage of genes coding for antibiotic or heavy metal resistance. Others, mainly cryptic in nature, have been demonstrated by plasmid profile studies on isolates from various habitats. Plasmids were shown to be present in a relatively few bacteria deposited in culture collections prior to the antibiotic era. Subsequently, the increased prevalence of R plasmids in bacteria in most ecosystems were due mainly to the selective pressure imposed by the use of antibiotics. This pressure may have been exerted either in the environment in which the strains were found or elsewhere, the environment subsequently being contaminated by antibiotic resistant bacteria.(ABSTRACT TRUNCATED AT 400 WORDS) | 1988 | 3074480 |
| 3341 | 5 | 0.9999 | The shared resistome of human and pig microbiota is mobilized by distinct genetic elements. The extensive use of antibiotics in hospitals and in the animal breeding industry has promoted antibiotic resistance in bacteria, which resulted in the emergence of a large number of antibiotic resistance genes in the intestinal tract of human and farmed animals. Genetic exchange of resistance genes between the two ecosystems is now well documented for pathogenic bacteria, but the repertoire of shared resistance genes in the commensal bacterial community and by which genetic modules they are disseminated are still unclear. By analyzing metagenomics data of human and pig intestinal samples both collected in Shenzhen, China, a set of 27 highly prevalent antibiotic resistance genes was found to be shared between human and pig intestinal microbiota. The mobile genetic context for 11 of these core antibiotic resistance genes could be identified by mining their carrying scaffolds constructed from the two datasets, leading to the detection of seven integrative and conjugative/mobilizable elements and two IS-related transposons. The comparison of the relative abundances between these detected mobile genetic elements and their associated antibiotic resistance genes revealed that for many genes, the estimated contribution of the mobile elements to the gene abundance differs strikingly depending on the host. These findings indicate that although some antibiotic resistance genes are ubiquitous across microbiota of human and pig populations, they probably relied on different genetic elements for their dissemination within each population.IMPORTANCE There is growing concern that antibiotic resistance genes could spread from the husbandry environment to human pathogens through dissemination mediated by mobile genetic elements. In this study, we investigated the contribution of mobile genetic elements to the abundance of highly prevalent antibiotic resistance genes found in commensal bacteria of both human and pig intestinal microbiota originating from the same region. Our results reveal that for most of these antibiotic resistance genes, the abundance is not explained by the same mobile genetic element in each host, suggesting that the human and pig microbial communities promoted a different set of mobile genetic carriers for the same antibiotic resistance genes. These results deepen our understanding of the dissemination of antibiotic resistance genes among and between human and pig gut microbiota. | 2021 | 33310720 |
| 3337 | 6 | 0.9999 | Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge. The emergence and spread of mobile antibiotic resistance genes (ARGs) in pathogens have become a serious threat to global health. Still little is known about where ARGs gain mobility in the first place. Here, we aimed to collect evidence indicating where such initial mobilization events of clinically relevant ARGs may have occurred. We found that the majority of previously identified origin species did not carry the mobilizing elements that likely enabled intracellular mobility of the ARGs, suggesting a necessary interplay between different bacteria. Analyses of a broad range of metagenomes revealed that wastewaters and wastewater-impacted environments had by far the highest abundance of both origin species and corresponding mobilizing elements. Most origin species were only occasionally detected in other environments. Co-occurrence of origin species and corresponding mobilizing elements were rare in human microbiota. Our results identify wastewaters and wastewater-impacted environments as plausible arenas for the initial mobilization of resistance genes. | 2023 | 36966231 |
| 3982 | 7 | 0.9998 | Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment. | 2020 | 32717638 |
| 3336 | 8 | 0.9998 | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments. Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria. | 2018 | 30013540 |
| 3343 | 9 | 0.9998 | Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. | 2014 | 25520706 |
| 4560 | 10 | 0.9998 | High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria. BACKGROUND: Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bacteria, under the One Health framework. However, evidence of ARGs exchange and potential factors that contribute to this transfer remain limited. RESULTS: Here, by combining culture-based population genomics and genetic comparisons with publicly available datasets, we reconstructed the complete genomes of 82 multidrug-resistant isolates from WWTPs and found that most WWTP-associated isolates were genetically distinct from their closest human/animal-associated relatives currently available in the public database. Even in the minority of lineages that were closely related, WWTP-associated isolates were characterized by quite different plasmid compositions. We identified a high diversity of circular plasmids (264 in total, of which 141 were potentially novel), which served as the main source of resistance, and showed potential horizontal transfer of ARG-bearing plasmids between WWTP- and humans/animal-associated bacteria. Notably, the potentially transferred ARGs and virulence factors (VFs) with different genetic backgrounds were closely associated with flanking insertion sequences (ISs), suggesting the importance of synergy between plasmids and ISs in mediating a multilayered hierarchical transfer of MDR and potentiating the emergence of MDR-hypervirulent clones. CONCLUSION: Our findings advance the current efforts to establish potential epidemiological links of MDR transmission between WWTP- and human/animal-associated bacteria. Plasmids play an important role in mediating the transfer of ARGs and the IS-associated ARGs that are carried by conjugative plasmids should be prioritized to tackle the spread of resistance. Video Abstract. | 2022 | 35078531 |
| 3340 | 11 | 0.9998 | Viruses as key reservoirs of antibiotic resistance genes in the environment. Antibiotic resistance is a rapidly growing health care problem globally and causes many illnesses and deaths. Bacteria can acquire antibiotic resistance genes (ARGs) by horizontal transfer mediated by mobile genetic elements, where the role of phages in their dissemination in natural environments has not yet been clearly resolved. From metagenomic studies, we showed that the mean proportion of predicted ARGs found in prophages (0-0.0028%) was lower than those present in the free viruses (0.001-0.1%). Beta-lactamase, from viruses in the swine gut, represented 0.10 % of the predicted genes. Overall, in the environment, the ARG distribution associated with viruses was strongly linked to human activity, and the low dN/dS ratio observed advocated for a negative selection of the ARGs harbored by the viruses. Our network approach showed that viruses were linked to putative pathogens (Enterobacterales and vibrionaceae) and were considered key vehicles in ARG transfer, similar to plasmids. Therefore, these ARGs could then be disseminated at larger temporal and spatial scales than those included in the bacterial genomes, allowing for time-delayed genetic exchanges. | 2019 | 31358910 |
| 3335 | 12 | 0.9998 | Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Aquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content. | 2021 | 33846529 |
| 4658 | 13 | 0.9998 | Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era." | 2006 | 16885440 |
| 4147 | 14 | 0.9998 | Lack of evidence that DNA in antibiotic preparations is a source of antibiotic resistance genes in bacteria from animal or human sources. Although DNA encoding antibiotic resistance has been discovered in antibiotic preparations, its significance for the development of antibiotic resistance in bacteria is unknown. No phylogenetic evidence was obtained for recent horizontal transfer of antibiotic resistance genes from antibiotic-producing organisms to bacteria from human or animal sources. | 2004 | 15273135 |
| 4322 | 15 | 0.9998 | Multi-Drug Resistance in Bacterial Genomes-A Comprehensive Bioinformatic Analysis. Antimicrobial resistance is presently one of the greatest threats to public health. The excessive and indiscriminate use of antibiotics imposes a continuous selective pressure that triggers the emergence of multi-drug resistance. We performed a large-scale analysis of closed bacterial genomes to identify multi-drug resistance considering the ResFinder antimicrobial classes. We found that more than 95% of the genomes harbor genes associated with resistance to disinfectants, glycopeptides, macrolides, and tetracyclines. On average, each genome encodes resistance to more than nine different classes of antimicrobial drugs. We found higher-than-expected co-occurrences of resistance genes in both plasmids and chromosomes for several classes of antibiotic resistance, including classes categorized as critical according to the World Health Organization (WHO). As a result of antibiotic-resistant priority pathogens, higher-than-expected co-occurrences appear in plasmids, increasing the potential for resistance dissemination. For the first time, co-occurrences of antibiotic resistance have been investigated for priority pathogens as defined by the WHO. For critically important pathogens, co-occurrences appear in plasmids, not in chromosomes, suggesting that the resistances may be epidemic and probably recent. These results hint at the need for new approaches to treating infections caused by critically important bacteria. | 2023 | 37511196 |
| 4042 | 16 | 0.9998 | Integrons in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes. The human intestinal microbiota plays a major beneficial role in immune development and resistance to pathogens. The use of antibiotics, however, can cause the spread of antibiotic resistance genes within the resident intestinal microbiota. Important vectors for this are integrons. This review therefore focuses on the integrons in non-pathogenic bacteria as a potential source for the development and persistence of multidrug resistance. Integrons are a group of genetic elements which are assembly platforms that can capture specific gene cassettes and express them. Integrons in pathogenic bacteria have been extensively investigated, while integrons in the intestinal microbiota have not yet gained much attention. Knowledge of the integrons residing in the microbiota, however, can potentially aid in controlling the spread of antibiotic resistance genes to pathogens. | 2014 | 25437798 |
| 3912 | 17 | 0.9998 | Genomic Sequence Analysis of Methicillin- and Carbapenem-Resistant Bacteria Isolated from Raw Sewage. Antibiotic resistance is one of the largest threats facing global health. Wastewater treatment plants are well-known hot spots for interaction between diverse bacteria, genetic exchange, and antibiotic resistance. Nonpathogenic bacteria theoretically act as reservoirs of antibiotic resistance subsequently transferring antibiotic resistance genes to pathogens, indicating that evolutionary processes occur outside clinical settings and may drive patterns of drug-resistant infections. We isolated and sequenced 100 bacterial strains from five wastewater treatment plants to analyze regional dynamics of antibiotic resistance in the California Central Valley. The results demonstrate the presence of a wide diversity of pathogenic and nonpathogenic bacteria, with an arithmetic mean of 5.1 resistance genes per isolate. Forty-three percent of resistance genes were located on plasmids, suggesting that large levels of gene transfer between bacteria that otherwise may not co-occur are facilitated by wastewater treatment. One of the strains detected was a Bacillus carrying pX01 and pX02 anthrax-like plasmids and multiple drug resistance genes. A correlation between resistance genes and taxonomy indicates that taxon-specific evolutionary studies may be useful in determining and predicting patterns of antibiotic resistance. Conversely, a lack of geographic correlation may indicate that landscape genetic studies to understand the spread of antibiotic resistance genes should be carried out at broader scales. This large data set provides insights into how pathogenic and nonpathogenic bacteria interact in wastewater environments and the resistance genes which may be horizontally transferred between them. This can help in determining the mechanisms leading to the increasing prevalence of drug-resistant infections observed in clinical settings. IMPORTANCE The reasons for the increasing prevalence of antibiotic-resistant infections are complex and associated with myriad clinical and environmental processes. Wastewater treatment plants operate as nexuses of bacterial interaction and are known hot spots for genetic exchange between bacteria, including antibiotic resistance genes. We isolated and sequenced 100 drug-resistant bacteria from five wastewater treatment plants in California's Central Valley, characterizing widespread gene sharing between pathogens and nonpathogens. We identified a novel, multiresistant Bacillus carrying anthrax-like plasmids. This empirical study supports the likelihood of evolutionary and population processes in the broader environment affecting the prevalence of clinical drug-resistant infections and identifies several taxa that may operate as reservoirs and vectors of antibiotic resistance genes. | 2021 | 34132566 |
| 4659 | 18 | 0.9998 | Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. Class 1 integrons carried by pathogens have acquired over 100 different gene cassettes encoding resistance to antimicrobial compounds, helping to generate a crisis in the management of infectious disease. It is presumed that these cassettes originated from environmental bacteria, but exchange of gene cassettes has surprisingly never been demonstrated outside laboratory or clinical contexts. We aimed to identify a natural environment where such exchanges might occur, and determine the phylogenetic range of participating integrons. Here we examine freshwater biofilms and show that families of cassettes conferring resistance to quaternary ammonium compounds (qac) are found on class 1 integrons identical to those from clinical contexts, on sequence variants of class 1 integrons only known from natural environments, and on other diverse classes of integrons only known from the chromosomes of soil and freshwater Proteobacteria. We conclude that gene cassettes might be readily shared between different integron classes found in environmental, commensal and pathogenic bacteria. This suggests that class 1 integrons in pathogens have access to a vast pool of gene cassettes, any of which could confer a phenotype of clinical relevance. Exploration of this resource might allow identification of resistance or virulence genes before they become part of multi-drug-resistant human pathogens. | 2009 | 19459951 |
| 4146 | 19 | 0.9998 | Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed. | 2022 | 36358142 |