# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3881 | 0 | 1.0000 | Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BACKGROUND: Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic-resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. Anthropogenic activity may contribute to the spread of bacterial resistance cycling through natural environments, including through the release of human waste, as sewage treatment only partially removes antibiotic-resistant bacteria. However, empirical data supporting these effects are currently limited. Here we used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally viable resistance genes in the gut microbiome of birds with aquatic habits in diverse locations. RESULTS: We found antibiotic resistance genes in birds from all localities, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. Comparative analysis revealed that birds feeding at the wastewater treatment plant carried the greatest resistance gene burden, including genes typically associated with multidrug resistance plasmids as the aac(6)-Ib-cr gene. Differences in resistance gene burden also reflected aspects of bird ecology, taxonomy, and microbial function. Notably, ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets, and penguins, which usually prey on more pristine waters. CONCLUSIONS: These transcriptome data suggest that human waste, even if it undergoes treatment, might contribute to the spread of antibiotic resistance genes to the wild. Differences in microbiome functioning across different bird lineages may also play a role in the antibiotic resistance burden carried by wild birds. In summary, we reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife, and show that meta-transcriptomics is a valuable tool to access functional resistance genes in whole microbial communities. | 2019 | 30961590 |
| 3882 | 1 | 0.9999 | Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture. Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. IMPORTANCE: Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically. | 2016 | 27073098 |
| 3884 | 2 | 0.9999 | Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain. | 2012 | 23133629 |
| 3342 | 3 | 0.9999 | Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance. | 2013 | 23370726 |
| 3343 | 4 | 0.9998 | Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. | 2014 | 25520706 |
| 3341 | 5 | 0.9998 | The shared resistome of human and pig microbiota is mobilized by distinct genetic elements. The extensive use of antibiotics in hospitals and in the animal breeding industry has promoted antibiotic resistance in bacteria, which resulted in the emergence of a large number of antibiotic resistance genes in the intestinal tract of human and farmed animals. Genetic exchange of resistance genes between the two ecosystems is now well documented for pathogenic bacteria, but the repertoire of shared resistance genes in the commensal bacterial community and by which genetic modules they are disseminated are still unclear. By analyzing metagenomics data of human and pig intestinal samples both collected in Shenzhen, China, a set of 27 highly prevalent antibiotic resistance genes was found to be shared between human and pig intestinal microbiota. The mobile genetic context for 11 of these core antibiotic resistance genes could be identified by mining their carrying scaffolds constructed from the two datasets, leading to the detection of seven integrative and conjugative/mobilizable elements and two IS-related transposons. The comparison of the relative abundances between these detected mobile genetic elements and their associated antibiotic resistance genes revealed that for many genes, the estimated contribution of the mobile elements to the gene abundance differs strikingly depending on the host. These findings indicate that although some antibiotic resistance genes are ubiquitous across microbiota of human and pig populations, they probably relied on different genetic elements for their dissemination within each population.IMPORTANCE There is growing concern that antibiotic resistance genes could spread from the husbandry environment to human pathogens through dissemination mediated by mobile genetic elements. In this study, we investigated the contribution of mobile genetic elements to the abundance of highly prevalent antibiotic resistance genes found in commensal bacteria of both human and pig intestinal microbiota originating from the same region. Our results reveal that for most of these antibiotic resistance genes, the abundance is not explained by the same mobile genetic element in each host, suggesting that the human and pig microbial communities promoted a different set of mobile genetic carriers for the same antibiotic resistance genes. These results deepen our understanding of the dissemination of antibiotic resistance genes among and between human and pig gut microbiota. | 2021 | 33310720 |
| 4051 | 6 | 0.9998 | The human microbiome harbors a diverse reservoir of antibiotic resistance genes. The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous culture-dependent methods. We showed that many resistance genes from cultured proteobacteria from human fecal samples are identical to resistance genes harbored by human pathogens, providing strong support for recent genetic exchange of this resistance machinery. In contrast, most of the resistance genes we identified with culture independent metagenomic sampling from the same samples were novel when compared to all known genes in public databases. While this clearly demonstrates that the antibiotic resistance reservoir of the large fraction of the human microbiome recalcitrant to culturing is severely under sampled, it may also suggest that barriers exist to lateral gene transfer between these bacteria and readily cultured human pathogens. If we hope to turn the tide against multidrug resistant infections, we must urgently commit to quantitatively characterizing the resistance reservoirs encoded by our diverse human microbiomes, with a particular focus on routes of exchange of these reservoirs with other microbial communities. | 2010 | 21178459 |
| 7694 | 7 | 0.9998 | The Human Gut Resistome up to Extreme Longevity. Antibiotic resistance (AR) is indisputably a major health threat which has drawn much attention in recent years. In particular, the gut microbiome has been shown to act as a pool of AR genes, potentially available to be transferred to opportunistic pathogens. Herein, we investigated for the first time changes in the human gut resistome during aging, up to extreme longevity, by analyzing shotgun metagenomics data of fecal samples from a geographically defined cohort of 62 urban individuals, stratified into four age groups: young adults, elderly, centenarians, and semisupercentenarians, i.e., individuals aged up to 109 years. According to our findings, some AR genes are similarly represented in all subjects regardless of age, potentially forming part of the core resistome. Interestingly, aging was found to be associated with a higher burden of some AR genes, including especially proteobacterial genes encoding multidrug efflux pumps. Our results warn of possible health implications and pave the way for further investigations aimed at containing AR accumulation, with the ultimate goal of promoting healthy aging. IMPORTANCE Antibiotic resistance is widespread among different ecosystems, and in humans it plays a key role in shaping the composition of the gut microbiota, enhancing the ecological fitness of certain bacterial populations when exposed to antibiotics. A considerable component of the definition of healthy aging and longevity is associated with the structure of the gut microbiota, and, in this regard, the presence of antibiotic-resistant bacteria is critical to many pathologies that come about with aging. However, the structure of the resistome has not yet been sufficiently elucidated. Here, we show distinct antibiotic resistance assets and specific microbial consortia characterizing the human gut resistome through aging. | 2021 | 34494880 |
| 3997 | 8 | 0.9998 | Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance. | 2011 | 21359229 |
| 7475 | 9 | 0.9998 | A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome. | 2022 | 36121163 |
| 3256 | 10 | 0.9998 | Co-localization of antibiotic resistance genes is widespread in the infant gut microbiome and associates with an immature gut microbial composition. BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract. | 2024 | 38730321 |
| 6698 | 11 | 0.9998 | The risk of transmitting antibiotic resistance through endophytic bacteria. Antibiotic resistance is a global human health threat distributed across humans, animals, plants, and the environment. Under the One-Health concept (humans, animals, and environment), the contamination of water bodies and soil by antibiotic-resistant bacteria cannot be dissociated from its potential transmission to humans. Edible plants can be colonized by a vast diversity of bacteria, representing an important link between the environment and humans in the One-Health triad. Based on multiple examples of bacterial groups that comprise endophytes reported in edible plants, and that have close phylogenetic proximity with human opportunistic pathogens, we argue that plants exposed to human-derived biological contamination may represent a path of transmission of antibiotic resistance to humans. | 2021 | 34593300 |
| 3880 | 12 | 0.9998 | Extensively acquired antimicrobial-resistant bacteria restructure the individual microbial community in post-antibiotic conditions. In recent years, the overuse of antibiotics has led to the emergence of antimicrobial-resistant (AMR) bacteria. To evaluate the spread of AMR bacteria, the reservoir of AMR genes (resistome) has been identified in environmental samples, hospital environments, and human populations, but the functional role of AMR bacteria and their persistence within individuals has not been fully investigated. Here, we performed a strain-resolved in-depth analysis of the resistome changes by reconstructing a large number of metagenome-assembled genomes from the gut microbiome of an antibiotic-treated individual. Interestingly, we identified two bacterial populations with different resistome profiles: extensively acquired antimicrobial-resistant bacteria (EARB) and sporadically acquired antimicrobial-resistant bacteria, and found that EARB showed broader drug resistance and a significant functional role in shaping individual microbiome composition after antibiotic treatment. Our findings of AMR bacteria would provide a new avenue for controlling the spread of AMR bacteria in the human community. | 2025 | 40360555 |
| 3253 | 13 | 0.9998 | Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species. | 2023 | 36760505 |
| 9648 | 14 | 0.9998 | The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes. | 2022 | 34856283 |
| 4127 | 15 | 0.9998 | The Perfect Condition for the Rising of Superbugs: Person-to-Person Contact and Antibiotic Use Are the Key Factors Responsible for the Positive Correlation between Antibiotic Resistance Gene Diversity and Virulence Gene Diversity in Human Metagenomes. Human metagenomes with a high diversity of virulence genes tend to have a high diversity of antibiotic-resistance genes and vice-versa. To understand this positive correlation, we simulated the transfer of these genes and bacterial pathogens in a community of interacting people that take antibiotics when infected by pathogens. Simulations show that people with higher diversity of virulence and resistance genes took antibiotics long ago, not recently. On the other extreme, we find people with low diversity of both gene types because they took antibiotics recently-while antibiotics select specific resistance genes, they also decrease gene diversity by eliminating bacteria. In general, the diversity of virulence and resistance genes becomes positively correlated whenever the transmission probability between people is higher than the probability of losing resistance genes. The positive correlation holds even under changes of several variables, such as the relative or total diversity of virulence and resistance genes, the contamination probability between individuals, the loss rate of resistance genes, or the social network type. Because the loss rate of resistance genes may be shallow, we conclude that the transmission between people and antibiotic usage are the leading causes for the positive correlation between virulence and antibiotic-resistance genes. | 2021 | 34065307 |
| 9653 | 16 | 0.9998 | Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Antibiotic resistance genes are ubiquitous in the environment. However, only a fraction of them are mobile and able to spread to pathogenic bacteria. Until now, studying the mobility of antibiotic resistance genes in environmental resistomes has been challenging due to inadequate sensitivity and difficulties in contig assembly of metagenome based methods. We developed a new cost and labor efficient method based on Inverse PCR and long read sequencing for studying mobility potential of environmental resistance genes. We applied Inverse PCR on sediment samples and identified 79 different MGE clusters associated with the studied resistance genes, including novel mobile genetic elements, co-selected resistance genes and a new putative antibiotic resistance gene. The results show that the method can be used in antibiotic resistance early warning systems. In comparison to metagenomics, Inverse PCR was markedly more sensitive and provided more data on resistance gene mobility and co-selected resistances. | 2016 | 27767072 |
| 3339 | 17 | 0.9998 | Examining the taxonomic distribution of tetracycline resistance in a wastewater plant. Microbial communities serve as reservoirs of antibiotic resistance genes (ARGs) and facilitate the dissemination of these genes to bacteria that infect humans. Relatively little is known about the taxonomic distribution of bacteria harboring ARGs in these reservoirs and the avenues of transmission due to the technical hurdles associated with characterizing the contents of complex microbial populations and the assignment of genes to particular genomes. Focusing on the array of tetracycline resistance (Tc(r)) genes in the primary and secondary phases of wastewater treatment, 17 of the 22 assayed Tc(r) genes were detected in at least one sample. We then applied emulsion, paired isolation, and concatenation PCR (epicPCR) to link tetracycline resistance genes to specific bacterial hosts. Whereas Tc(r) genes tend to vary in their distributions among bacterial taxa according to their modes of action, there were numerous instances in which a particular Tc(r) gene was associated with a host that was distantly related to all other bacteria bearing the same gene, including several hosts not previously identified. Tc(r) genes are far less host-restricted than previously assumed, indicating that complex microbial communities serve as settings where ARGs are spread among divergent bacterial phyla. | 2024 | 38317688 |
| 3889 | 18 | 0.9998 | Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions. | 2025 | 40298543 |
| 3885 | 19 | 0.9998 | Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution. | 2014 | 24821495 |