# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 387 | 0 | 1.0000 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 388 | 1 | 0.9998 | Improved bacterial hosts for regulated expression of genes from lambda pL plasmid vectors. The construction and use of a set of Escherichia coli strains with defective lambda prophages that facilitate expression of genes cloned in lambda pL-plasmid vectors is described. These bacteria allow high and regulated expression of such genes, whereas a kanamycin-resistance marker (KmR) on the prophage allows easy identification and genetic transfer from strain to strain. Optimal conditions for examining gene expression with the pL-vector systems using these strains are discussed. | 1993 | 8406046 |
| 263 | 2 | 0.9998 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 420 | 3 | 0.9998 | Transferable nitrofuran resistance conferred by R-plasmids in clinical isolates of Escherichia coli. A high proportion of nitrofuran-resistant strains has been found in a collection of antibiotic-resistant Gram-negative bacteria isolated from patients with urinary tract infections. Some of the Escherichia coli carried R-plasmids that conferred resistance to nitrofurantoin and nitrofurazone. The mechanism of resistance is not clear; only in lactose non-fermenting recipients was there a decrease in the nitrofuran-reducing ability of whole-cell suspensions. One of the plasmids conferred enhanced resistance to UV light on DNA repair defective mutants but not on repair efficient strains. In some resistant strains, the total resistance was apparently the result of a combination of chromosomal and plasmid-borne genes. The presence of the plasmid may allow the development of higher resistance levels by mutation of chromosomal genes. | 1983 | 6368515 |
| 386 | 4 | 0.9998 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 9298 | 5 | 0.9997 | Delivering "Chromatic Bacteria" Fluorescent Protein Tags to Proteobacteria Using Conjugation. Recently, we published a large and versatile set of plasmids, the chromatic bacteria toolbox, to deliver eight different fluorescent protein genes and four combinations of antibiotic resistance genes to Gram-negative bacteria. Fluorescent tags are important tools for single-cell microbiology, synthetic community studies, biofilm, and host-microbe interaction studies. Using conjugation helper strain E. coli S17-1 as a donor, we show how plasmid conjugation can be used to deliver broad host range plasmids, Tn5 transposons delivery plasmids, and Tn7 transposon delivery plasmids into species belonging to the Proteobacteria. To that end, donor and recipient bacteria are grown under standard growth conditions before they are mixed and incubated under non-selective conditions. Then, transconjugants or exconjugant recipients are selected on selective media. Mutant colonies are screened using a combination of tools to ensure that the desired plasmids or transposons are present and that the colonies are not containing any surviving donors. Through conjugation, a wide range of Gram-negative bacteria can be modified without prior, often time-consuming, establishment of competent cell and electroporation procedures that need to be adjusted for every individual strain. The here presented protocol is not exclusive for the delivery of Chromatic bacteria plasmids and transposons, but can also be used to deliver other mobilizable plasmids to bacterial recipients. | 2019 | 33654996 |
| 260 | 6 | 0.9997 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 6312 | 7 | 0.9997 | D-serine deaminase is a stringent selective marker in genetic crosses. The presence of the locus for D-serine deaminase (dsd) renders bacteria resistant to growth inhibition by D-serine and enables them to grow with D-serine as the sole nitrogen source. The two properties permit stringent selection in genetic crosses and make the D-serine deaminase gene an excellent marker, especially in the construction of strains for which the use of antibiotic resistance genes as selective markers is not allowed. | 1995 | 7814336 |
| 9304 | 8 | 0.9997 | Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. The capacity of Campylobacter jejuni to generate genetic diversity was determined for its flagellar region. Recombination within a genome, as well as recombination after the uptake of exogenous DNA, could be demonstrated. The subunit of the flagellar filament of C. jejuni is encoded by two tandem genes, flaA and flaB, which are highly similar and therefore subject to recombination. A spontaneous recombination within this locus was demonstrated in a bacterial clone containing an antibiotic-resistance gene inserted in flaA. A recombinant was isolated in which the antibiotic-resistance gene had been repositioned into flaB, indicating that genetic information can be exchanged between the two flagellin genes of C. jejuni. The occurrence of recombinational events after the uptake of exogenous DNA by naturally competent bacteria was demonstrated with two mutants containing different antibiotic-resistance markers in their flagellin genes. Double-resistant transformants were formed when purified chromosomal donor DNA was added to a recipient strain, when the two bacterial cultures were mixed under conditions that induce natural competence, or when the two strains were cocultured. Both mechanisms of recombination may be used by the pathogenic organism to escape the immunological responses of the host or otherwise adapt to the environment. | 1995 | 7894725 |
| 423 | 9 | 0.9997 | Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization. As the first stage in investigating the genetic basis of natural variation in Escherichia coli, the gene(s) conferring the ability to use sucrose as a carbon and energy source (given the symbol sac+) was transferred from a wild strain to K12, which does not use sucrose. The sac+ region was transferred by two different methods. On both occasions it took a chromosomal location at minute 50.5 on the linkage map, between aroC and supN, in the region of the dsd genes, which confer the ability to use D-serine as a carbon and energy source. When the sac+ region was present in the K12 chromosome the bacteria were unable to use D-serine as a carbon and energy source. In F' sac+/dsd+ diploids, the dsd+ genes were similarly not expressed. Strain K12(sac+) bacteria were sensitive to inhibition by D-serine; they mutated to D-serine resistance with much greater frequency than did a dsd mutant of K12. Such bacteria also mutated frequently to use raffinose. Strain K12(sac+) bacteria did not utilize sucrose when they carried a mutation affecting the phosphotransferase system. | 1979 | 372492 |
| 6324 | 10 | 0.9997 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 6313 | 11 | 0.9997 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 383 | 12 | 0.9997 | Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Broad-host-range, conjugative vectors with a constitutively expressed gusA gene combined with different antibiotic resistance (tetracycline, gentamicin, kanamycin) genes have been constructed. These plasmids are designed for tracking Gram-negative bacterial strains without the risk of random mutagenesis. We also constructed a set of cassettes containing a promoterless gusA gene linked with different antibiotic resistance genes for making transcriptional fusions and for cassette mutagenesis. New plasmids and cassettes can be useful tools for studying gene expression, interaction of bacteria with plants and monitoring bacteria in the environment. | 2001 | 11348677 |
| 9275 | 13 | 0.9997 | Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance. | 2011 | 21632619 |
| 4419 | 14 | 0.9997 | Epidemiology of tetracycline-resistance determinants. Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline. | 1994 | 7850200 |
| 261 | 15 | 0.9997 | Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Allelic exchange is frequently used in bacteria to generate knockout mutants in genes of interest, to carry out phenotypic analysis and learn about their function. Frequently, understanding of gene function in complex processes such as pathogenesis requires the generation of multiple mutant strains. In Pseudomonads and other non-Enterobacteriaceae, this is a time-consuming and laborious process based on the use of suicide vectors and allelic exchange of the appropriate mutant version of each gene, disrupted by a different antibiotic marker. This often implies the generation of a series of mutants for each gene, each disrupted by a different antibiotic marker, in order to obtain all possible double or multiple mutant combinations. In this work, we have modified this method by developing a set of 3 plasmid derivatives from the previously described suicide vector for allelic exchange, pKAS32, to make antibiotic marker exchange easier and thus accelerate the entire process. Briefly, the construction of each single gene knockout mutant is carried out by allelic exchange of the chromosomal gene with a mutant allele disrupted by the insertion of a kanamycin resistance cassette. When a double mutant strain is required, antibiotic marker exchange is performed in either one of the single mutants, using any of the three plasmid derivatives that carry the kanamycin resistance gene disrupted by either a chloramphenicol, gentamycin, or streptomycin resistance cassette. The single mutant strain, carrying now an antibiotic resistance marker other than kanamycin, can be used to introduce a second mutation using the original plasmid constructs, to generate a double mutant. The process can be repeated sequentially to generate multiple mutants. We have validated this method by generating strains carrying different combinations of mutations in genes encoding different transcriptional regulators of the Hrp type III secretion system in Pseudomonas syringae. We have also tested the genetic organisation and stability of the resulting mutant strains during growth in laboratory conditions as well as in planta. | 2006 | 16750581 |
| 4418 | 16 | 0.9997 | Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear. For some tetracycline resistance genes, expression is regulated. In efflux genes found in gram-negative enteric bacteria, regulation is via a repressor that interacts with tetracycline. Gram-positive efflux genes appear to be regulated by an attenuation mechanism. Recently it was reported that at least one of the ribosome protection genes is regulated by attenuation. Tetracycline resistance genes are often found on transmissible elements. Efflux resistance genes are generally found on plasmids, whereas genes involved in ribosome protection have been found on both plasmids and self-transmissible chromosomal elements (conjugative transposons). One class of conjugative transposon, originally found in streptococci, can transfer itself from streptococci to a variety of recipients, including other gram-positive bacteria, gram-negative bacteria, and mycoplasmas. Another class of conjugative transposons has been found in the Bacteroides group. An unusual feature of the Bacteroides elements is that their transfer is enhanced by preexposure to tetracycline. Thus, tetracycline has the double effect of selecting for recipients that acquire a resistance gene and stimulating transfer of the gene. | 1992 | 1423217 |
| 259 | 17 | 0.9996 | Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10(-3) per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA(+) strain MG1655 and the RecA(-) strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology. | 2024 | 39418641 |
| 445 | 18 | 0.9996 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 379 | 19 | 0.9996 | Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. A broad host range cloning vehicle that can be mobilized at high frequency into Gram-negative bacteria has been constructed from the naturally occurring antibiotic resistance plasmid RK2. The vehicle is 20 kilobase pairs in size, encodes tetracycline resistance, and contains two single restriction enzyme sites suitable for cloning. Mobilization is effected by a helper plasmid consisting of the RK2 transfer genes linked to a ColE1 replicon. By use of this plasmid vehicle, a gene bank of the DNA from a wild-type strain of Rhizobium meliloti has been constructed and established in Escherichia coli. One of the hybrid plasmids in the bank contains a DNA insert of approximately 26 kilobase pairs which has homology to the nitrogenase structural gene region of Klebsiella pneumoniae. | 1980 | 7012838 |