Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
387901.0000Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family. Antibiotic resistance in pathogenic bacteria is a major problem for human health. We analyzed metagenomic datasets from ancient and remote samples from diverse environmental sources and observed the presence of all the eleven antibiotic resistance genes (ARG) groups evaluated. Since ancient samples are not subjected to modern effects of antibiotic misuse, they represent a clean model to explore the natural diversity of ARG in the environment. Most sequences showed high divergence compared with known ARG, representing a much larger universe than the currently known and characterized ARGs. We explored whether proteins within the "divergent resistome" may correspond to functional ARG by characterizing a beta-lactamase hit with very low similarity to any known sequence (<45% to best BLAST hit in NCBI). By starting from purely in-silico data, we revived a new family of class B beta-lactamases from ancient medieval samples, which exhibited a very high penicillinase activity. In this work, we explored ancient resistomes and added novel support to previous works showing that the universe of ARG is naturally vast and diverse in microbial communities. Our results bring a new perspective to the exploration of environmental ARG and indicate that this gigantic reservoir represents a natural endless source of emerging resistances.201627518706
334210.9998Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance.201323370726
389420.9998Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics. Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.202133916668
388430.9998Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.201223133629
387040.9998The ocean as a global reservoir of antibiotic resistance genes. Recent studies of natural environments have revealed vast genetic reservoirs of antibiotic resistance (AR) genes. Soil bacteria and human pathogens share AR genes, and AR genes have been discovered in a variety of habitats. However, there is little knowledge about the presence and diversity of AR genes in marine environments and which organisms host AR genes. To address this, we identified the diversity of genes conferring resistance to ampicillin, tetracycline, nitrofurantoin, and sulfadimethoxine in diverse marine environments using functional metagenomics (the cloning and screening of random DNA fragments). Marine environments were host to a diversity of AR-conferring genes. Antibiotic-resistant clones were found at all sites, with 28% of the genes identified as known AR genes (encoding beta-lactamases, bicyclomycin resistance pumps, etc.). However, the majority of AR genes were not previously classified as such but had products similar to proteins such as transport pumps, oxidoreductases, and hydrolases. Furthermore, 44% of the genes conferring antibiotic resistance were found in abundant marine taxa (e.g., Pelagibacter, Prochlorococcus, and Vibrio). Therefore, we uncovered a previously unknown diversity of genes that conferred an AR phenotype among marine environments, which makes the ocean a global reservoir of both clinically relevant and potentially novel AR genes.201526296734
404950.9998The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.201526104702
386760.9998Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. Despite the threat posed by antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, particularly among the as yet unculturable environmental bacteria. One potentially rich but largely unstudied environmental reservoir is soil. The complexity of its microbial community coupled with its high density of antibiotic-producing bacteria makes the soil a likely origin for diverse antibiotic resistance determinants. To investigate antibiotic resistance genes among uncultured bacteria in an undisturbed soil environment, we undertook a functional metagenomic analysis of a remote Alaskan soil. We report that this soil is a reservoir for beta-lactamases that function in Escherichia coli, including divergent beta-lactamases and the first bifunctional beta-lactamase. Our findings suggest that even in the absence of selective pressure imposed by anthropogenic activity, the soil microbial community in an unpolluted site harbors unique and ancient beta-lactam resistance determinants. Moreover, despite their evolutionary distance from previously known genes, the Alaskan beta-lactamases confer resistance on E. coli without manipulating its gene expression machinery, demonstrating the potential for soil resistance genes to compromise human health, if transferred to pathogens.200918843302
964870.9998The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes.202234856283
389380.9998Diverse antibiotic resistance genes in dairy cow manure. Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.201424757214
334390.9998Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes.201425520706
4036100.9998Man-made microbial resistances in built environments. Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.201930814504
9653110.9998Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Antibiotic resistance genes are ubiquitous in the environment. However, only a fraction of them are mobile and able to spread to pathogenic bacteria. Until now, studying the mobility of antibiotic resistance genes in environmental resistomes has been challenging due to inadequate sensitivity and difficulties in contig assembly of metagenome based methods. We developed a new cost and labor efficient method based on Inverse PCR and long read sequencing for studying mobility potential of environmental resistance genes. We applied Inverse PCR on sediment samples and identified 79 different MGE clusters associated with the studied resistance genes, including novel mobile genetic elements, co-selected resistance genes and a new putative antibiotic resistance gene. The results show that the method can be used in antibiotic resistance early warning systems. In comparison to metagenomics, Inverse PCR was markedly more sensitive and provided more data on resistance gene mobility and co-selected resistances.201627767072
4051120.9998The human microbiome harbors a diverse reservoir of antibiotic resistance genes. The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous culture-dependent methods. We showed that many resistance genes from cultured proteobacteria from human fecal samples are identical to resistance genes harbored by human pathogens, providing strong support for recent genetic exchange of this resistance machinery. In contrast, most of the resistance genes we identified with culture independent metagenomic sampling from the same samples were novel when compared to all known genes in public databases. While this clearly demonstrates that the antibiotic resistance reservoir of the large fraction of the human microbiome recalcitrant to culturing is severely under sampled, it may also suggest that barriers exist to lateral gene transfer between these bacteria and readily cultured human pathogens. If we hope to turn the tide against multidrug resistant infections, we must urgently commit to quantitatively characterizing the resistance reservoirs encoded by our diverse human microbiomes, with a particular focus on routes of exchange of these reservoirs with other microbial communities.201021178459
4035130.9998Discovery of novel antibiotic resistance genes through metagenomics. Antibiotic resistance (AR) represents a challenge for the treatment of infectious diseases. Traditionally, antibiotic resistance determinants have been retrieved from culturable bacteria which represent a minor fraction of the total microbial diversity found in natural environments such as soils. In this review, we summarize recent advances in the study of antibiotic resistance using two main culture-independent approaches: sequence-based metagenomics and functional metagenomics.201425564024
4052140.9998Functional metagenomics for the investigation of antibiotic resistance. Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.201424556726
9649150.9998Bacteria of the order Burkholderiales are original environmental hosts of type II trimethoprim resistance genes (dfrB). It is consensus that clinically relevant antibiotic resistance genes have their origin in environmental bacteria, including the large pool of primarily benign species. Yet, for the vast majority of acquired antibiotic resistance genes, the original environmental host(s) has not been identified to date. Closing this knowledge gap could improve our understanding of how antimicrobial resistance proliferates in the bacterial domain and shed light on the crucial step of initial resistance gene mobilization in particular. Here, we combine information from publicly available long- and short-read environmental metagenomes as well as whole-genome sequences to identify the original environmental hosts of dfrB, a family of genes conferring resistance to trimethoprim. Although this gene family stands in the shadow of the more widespread, structurally different dfrA, it has recently gained attention through the discovery of several new members. Based on the genetic context of dfrB observed in long-read metagenomes, we predicted bacteria of the order Burkholderiales to function as original environmental hosts of the predominant gene variants in both soil and freshwater. The predictions were independently confirmed by whole-genome datasets and statistical correlations between dfrB abundance and taxonomic composition of environmental bacterial communities. Our study suggests that Burkholderiales in general and the family Comamonadaceae in particular represent environmental origins of dfrB genes, some of which now contribute to the acquired resistome of facultative pathogens. We propose that our workflow centered on long-read environmental metagenomes allows for the identification of the original hosts of further clinically relevant antibiotic resistance genes.202439658215
9654160.9998Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls. Antibiotic resistance is an issue in many areas of human activity. The mobilization of antibiotic resistance genes within the bacterial community makes it difficult to study and control the phenomenon. It is known that certain insertion sequences, which are mobile genetic elements, can participate in the mobilization of antibiotic resistance genes and in the expression of these genes. However, the magnitude of the contribution of insertion sequences to the mobility of antibiotic resistance genes remains understudied. In this study, the relationships between insertion sequences and antibiotic resistance genes present in the microbiome were investigated using two public datasets. The first made it possible to analyze the effects of different antibiotics in a controlled mouse model. The second dataset came from a study of the differences between conventional and organic-raised cattle. Although it was possible to find statistically significant correlations between the insertion sequences and antibiotic resistance genes in both datasets, several challenges remain to better understand the contribution of insertion sequences to the motility of antibiotic resistance genes. Obtaining more complete and less fragmented metagenomes with long-read sequencing technologies could make it possible to understand the mechanisms favoring horizontal transfers within the microbiome with greater precision.202336671375
3880170.9998Extensively acquired antimicrobial-resistant bacteria restructure the individual microbial community in post-antibiotic conditions. In recent years, the overuse of antibiotics has led to the emergence of antimicrobial-resistant (AMR) bacteria. To evaluate the spread of AMR bacteria, the reservoir of AMR genes (resistome) has been identified in environmental samples, hospital environments, and human populations, but the functional role of AMR bacteria and their persistence within individuals has not been fully investigated. Here, we performed a strain-resolved in-depth analysis of the resistome changes by reconstructing a large number of metagenome-assembled genomes from the gut microbiome of an antibiotic-treated individual. Interestingly, we identified two bacterial populations with different resistome profiles: extensively acquired antimicrobial-resistant bacteria (EARB) and sporadically acquired antimicrobial-resistant bacteria, and found that EARB showed broader drug resistance and a significant functional role in shaping individual microbiome composition after antibiotic treatment. Our findings of AMR bacteria would provide a new avenue for controlling the spread of AMR bacteria in the human community.202540360555
3892180.9998Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.201627065405
3341190.9997The shared resistome of human and pig microbiota is mobilized by distinct genetic elements. The extensive use of antibiotics in hospitals and in the animal breeding industry has promoted antibiotic resistance in bacteria, which resulted in the emergence of a large number of antibiotic resistance genes in the intestinal tract of human and farmed animals. Genetic exchange of resistance genes between the two ecosystems is now well documented for pathogenic bacteria, but the repertoire of shared resistance genes in the commensal bacterial community and by which genetic modules they are disseminated are still unclear. By analyzing metagenomics data of human and pig intestinal samples both collected in Shenzhen, China, a set of 27 highly prevalent antibiotic resistance genes was found to be shared between human and pig intestinal microbiota. The mobile genetic context for 11 of these core antibiotic resistance genes could be identified by mining their carrying scaffolds constructed from the two datasets, leading to the detection of seven integrative and conjugative/mobilizable elements and two IS-related transposons. The comparison of the relative abundances between these detected mobile genetic elements and their associated antibiotic resistance genes revealed that for many genes, the estimated contribution of the mobile elements to the gene abundance differs strikingly depending on the host. These findings indicate that although some antibiotic resistance genes are ubiquitous across microbiota of human and pig populations, they probably relied on different genetic elements for their dissemination within each population.IMPORTANCE There is growing concern that antibiotic resistance genes could spread from the husbandry environment to human pathogens through dissemination mediated by mobile genetic elements. In this study, we investigated the contribution of mobile genetic elements to the abundance of highly prevalent antibiotic resistance genes found in commensal bacteria of both human and pig intestinal microbiota originating from the same region. Our results reveal that for most of these antibiotic resistance genes, the abundance is not explained by the same mobile genetic element in each host, suggesting that the human and pig microbial communities promoted a different set of mobile genetic carriers for the same antibiotic resistance genes. These results deepen our understanding of the dissemination of antibiotic resistance genes among and between human and pig gut microbiota.202133310720