# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3860 | 0 | 1.0000 | Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals. | 2021 | 34298350 |
| 3859 | 1 | 0.9999 | Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter. Heavy metal contamination of source water frequently occurred in developing countries as a result of accidents. To address the problems, most of the previous studies have focused on engineering countermeasures. In this study, we investigated the effects of heavy metals, particularly copper, on the development of antibiotic resistance by establishing a copper shock loading test. Results revealed that co-selection occurred rapidly within 6 h. Copper, at the levels of 10 and 100 mg/L, significantly increased bacterial resistance to the antibiotics tested, including rifampin, erythromycin, kanamycin, and a few others. A total of 117 antimicrobial-resistance genes were detected from 12 types of genes, and the relative abundance of most genes (particularly mobile genetic elements intⅠand transposons) was markedly enriched by at least one fold. Furthermore, the copper shock loading altered the bacterial community. Numerous heavy metal and antibiotic resistant strains were screened out and enriched. These strains are expected to enhance the overall level of resistance. More noticeably, the majority of the co-selected antibiotic resistance could sustain for at least 20 h in the absence of copper and antimicrobial drugs. Resistance to vancomycin, erythromycin and lincomycin even could remain for 7 days. The prominent selection pressure by the copper shock loading implies that a real accident most likely poses similar impacts on the water environment. An accidental release of heavy metals would not only cause harm to the ecological environment, but also contribute to the development of bacterial antibiotic resistance. Broader concerns should be raised about the biological risks caused by sudden releases of pollutants by accidents. | 2018 | 29059628 |
| 3853 | 2 | 0.9999 | Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome. | 2020 | 32302839 |
| 3862 | 3 | 0.9999 | Interaction of tetracycline and copper co-intake in inducing antibiotic resistance genes and potential pathogens in mouse gut. The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework. | 2024 | 38527398 |
| 7406 | 4 | 0.9998 | Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance. | 2017 | 27822686 |
| 7471 | 5 | 0.9998 | Impact of fluoroquinolone and heavy metal pollution on antibiotic resistance maintenance in aquatic ecosystems. BACKGROUND: Freshwater pollution with compounds used during anthropogenic activities could be a major driver of antibiotic resistance emergence and dissemination in environmental settings. Fluoroquinolones and heavy metals are two widely used aquatic pollutants that show a high stability in the environment and have well-known effects on antibiotic resistance selection. However, the impact of these compounds on antibiotic resistance maintenance in aquatic ecosystems remains unknown. In this study, we used a microcosm approach to determine the persistence of two fluoroquinolones (ciprofloxacin, ofloxacin) and two heavy metals (copper and zinc) in the Rhône river over 27 days. In addition, we established links between antibiotic and metal pollution, alone and in combination, and the composition of freshwater bacterial communities, the selection of specific members and the selection and maintenance of antibiotic and metal resistance genes (ARGs and MRGs) using a metagenomics approach. RESULTS: Whereas ofloxacin was detected at higher levels in freshwater after 27 days, copper had the strongest influence on bacterial communities and antibiotic and metal resistance gene selection. In addition, heavy metal exposure selected for some ARG-harboring bacteria that contained MRGs. Our research shows a heavy metal-driven transient co-selection for fluoroquinolone resistance in an aquatic ecosystem that could be largely explained by the short-term selection of Pseudomonas subpopulations harboring both fluoroquinolone efflux pumps and copper resistance genes. CONCLUSION: This research highlights the complexity and compound-specificity of dose-response relationships in freshwater ecosystems and provides new insights into the medium-term community structure modifications induced by overall sub-inhibitory levels of antibiotic and heavy metal pollution that may lead to the selection and maintenance of antibiotic resistance in low-impacted ecosystems exposed to multiple pollutants. | 2025 | 40426239 |
| 3861 | 6 | 0.9998 | Dietary intake of enrofloxacin promotes the spread of antibiotic resistance from food to simulated human gut. Antibiotic residues are commonly found in food. The effect of dietary exposure to veterinary antibiotics on the transmission of antibiotic resistant bacteria and antibiotic resistance genes from food to humans is unknown. We found that dietary exposure to enrofloxacin reduced microbial diversity, interactions and the immune responses, weakened the colonization resistance of the resident microbiota, and promoted the colonization of exogenous Escherichia coli K-12 MG1655 in the simulated human intestine both in vitro and in vivo experiments in mice. In addition to the growth advantages for potential most likely bacterial hosts of ARGs under enrofloxacin exposure, the dietary exposure to enrofloxacin promoted horizontal transfer of resistance plasmids and altered the simulated human gut antibiotic resistome in a time-dependent manner. Collectively, these findings demonstrated that dietary intake of enrofloxacin promoted the colonization of E. coli K-12 MG1655 in the simulated human intestine and the horizontal transfer of antibiotic resistance genes, highlighting the risk of antibiotic resistance transmission from food to humans mediated by dietary exposure to veterinary antibiotics. | 2025 | 40121546 |
| 6766 | 7 | 0.9998 | Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water. Aquaculture water with antibiotic resistance genes (ARGs) is escalating due to the horizontal gene transfer. Non-antibiotic stressors specifically found, including those from fishery feed and disinfectants, are potential co-selectors. However, the mechanisms underlying this process remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic-resistant plasmid RP4 were established to examine conjugative transfer frequency under exposure to five widely used non-antibiotic factors in aquaculture water: iodine, oxolinic acid, NO(2)-N, NO(3)-N and H(2)O(2) and four different recipient bacteria: E. coli HB101, Citrobacter portucalensis SG1, Vibrio harveyi and Vibrio alginolyticus. The study found that low concentrations of non-antibiotic factors significantly promoted conjugative transfer, whereas high concentrations inhibited it. Moreover, the conjugation transfer efficiencies were significantly different with different bacterial species within (E. coli HB101 ∼ 10(-3) %) or cross genera (C. portucalensis SG1 ∼10(-5) %, V. harveyi ∼1 %). Besides, excessive exposure concentrations inhibited the expression of related genes and the generation of reactive oxygen species (ROS). Regulation of multiple related genes and ROS-induced SOS responses are common primary mechanisms. However, the mechanisms of non-antibiotic factors differ from those of standard antibiotics, with direct changes in cell membrane permeability potentially playing a dominant role. Additionally, variations among non-antibiotic factors and the specific characteristics of bacterial species contribute to differences in conjugation mechanisms. Notably, this study found that non-antibiotic factors could increase the frequency of intergeneric conjugation beyond that of intrageneric conjugation. Furthermore, non-antibiotic factors influenced by multiple transport systems may raise the risk of unintended cross-resistance, significantly amplifying the potential for resistance gene spread. This study underscores the significance of non-antibiotic factors in the propagation of ARGs, highlighting their role in advancing aquaculture development and protecting human health. | 2025 | 39615392 |
| 7403 | 8 | 0.9998 | Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Enrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host. | 2023 | 36840593 |
| 3845 | 9 | 0.9998 | A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Antibiotic resistance genes (ARGs) in environment have become a growing public concern, due to their potential to be obtained by pathogens and their duplication along cell division. Horizontal gene transfer (HGT) was reported to be responsible for ARGs dissemination in microbes, but the HGT feature in environmental biofilm was still unclear due to insufficient assay tools. To address this challenge, we applied a novel microfluidic system to cultivate thin biofilm by continuous supply of nutrients and close contact between cells. Resembling the living state of biofilm in open environment, this chip visualized the transfer of ARG-encoded plasmids RP4 and pKJK5 to the receptors, e.g., activated sludge bacteria. The average plasmid transfer frequency per receptor (T/R) from RP4-hosted Pseudomonas putida KT2440 to activated sludge bacteria was quantified to be 2.5 × 10(-3) via flow cytometry, and T/R for pKJK5-hosted Escherichia coli MG1655 was 8.9 × 10(-3), while the corresponding average frequencies per donor (T/D) were diverse for the two host strains as 4.3 × 10(-3) and 1.4 × 10(-1) respectively. The difference between T/R and T/D was explained by the plasmid transfer kinetics, implying specific purposes of the two calculations. Finally, we collected the transconjugants by fluorescent activated cell sorting and further sequenced their 16S rDNA. Bacteria from phyla Proteobacteria and Firmicutes were found more susceptible to be transconjugants than those from Bacteroidetes. Our work demonstrated that microfluidic system was advantageous in biofilm HGT study, which can provide more insights into environmental ARG control. | 2018 | 29909325 |
| 3680 | 10 | 0.9998 | Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment. | 2018 | 30459724 |
| 7202 | 11 | 0.9998 | Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL(-1)) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL(-1)). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs). | 2023 | 37947439 |
| 6894 | 12 | 0.9998 | Profiles of antibiotic- and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Farmed animals produce excrement containing excessive amounts of toxic heavy metals as a result of consuming compound feed as well as receiving medical treatments, and the presence of these heavy metals may aggravate the risk of spreading drug-resistance genes through co-selection during manure treatment and application processes. However, research on the association between heavy metals and antimicrobial resistance is still lacking. In this study, metagenomic sequencing was used to explore the effects of the co-selection of environmentally toxic heavy metals on the resistome in manure. A relevance network analysis showed that metal-resistance genes (MRGs), especially for copper (Cu) and zinc (Zn), were positively correlated with multiple types of antibiotic-resistance genes (ARGs) and formed a complex network. Most bacteria that co-occurred with both MRGs and ARGs simultaneously are members of Proteobacteria and accounted for 54.7% of the total microbial species in the relevance network. The remaining bacteria belonged to Firmicutes, Bacteroidetes and Actinobacteria. Among the four phyla, Cu- and Zn-resistance genes had more complex correlations with ARGs than other MRG types, reflecting the occurrence of ARG co-selection under the selective pressure of high Cu and Zn levels. In addition, approximately 64.8%, 59.1% and 68.4% of MRGs that correlated with the presence of plasmids, viruses and prophages, respectively, are Cu- or Zn-resistant, and they co-occurred with various ARGs, indicating that mobile genetic elements participate in mediating ARG co-selection in response to Cu and Zn pressure. The results indicated that the use of heavy-metal additives in feed induces the increases of drug resistance genes in manure through co-selection, aggravating the risk of antimicrobial resistance diffusion from animal farm to manure land applications. | 2022 | 35617901 |
| 7629 | 13 | 0.9998 | Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation. | 2017 | 28549325 |
| 7419 | 14 | 0.9998 | The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N(2)O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle. | 2020 | 32023788 |
| 7405 | 15 | 0.9998 | Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Soil is one of the biggest reservoirs of microbial diversity, yet the processes that define the community dynamics are not fully understood. Apart from soil management being vital for agricultural purposes, it is also considered a favorable environment for the evolution and development of antimicrobial resistance, which is due to its high complexity and ongoing competition between the microorganisms. Different approaches to agricultural production might have specific outcomes for soil microbial community composition and antibiotic resistance phenotype. Therefore in this study we aimed to compare the soil microbiota and its resistome in conventional and organic farming systems that are continually influenced by the different treatment (inorganic fertilizers and pesticides vs. organic manure and no chemical pest management). The comparison of the soil microbial communities revealed no major differences among the main phyla of bacteria between the two farming styles with similar soil structure and pH. Only small differences between the lower taxa could be observed indicating that the soil community is stable, with minor shifts in composition being able to handle the different styles of treatment and fertilization. It is still unclear what level of intensity can change microbial composition but current conventional farming in Central Europe demonstrates acceptable level of intensity for soil bacterial communities. When the resistome of the soils was assessed by screening the total soil DNA for clinically relevant and soil-derived antibiotic resistance genes, a low variety of resistance determinants was detected (resistance to β-lactams, aminoglycosides, tetracycline, erythromycin, and rifampicin) with no clear preference for the soil farming type. The same soil samples were also used to isolate antibiotic resistant cultivable bacteria, which were predominated by highly resistant isolates of Pseudomonas, Stenotrophomonas, Sphingobacterium and Chryseobacterium genera. The resistance of these isolates was largely dependent on the efflux mechanisms, the soil Pseudomonas spp. relying mostly on RND, while Stenotrophomonas spp. and Chryseobacterium spp. on RND and ABC transporters. | 2019 | 31105678 |
| 7399 | 16 | 0.9998 | Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: Role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota. The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid-mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self-transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4-mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%-97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments. | 2017 | 28742284 |
| 7201 | 17 | 0.9998 | Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Recently, the microbial degradation of tetracycline has been widely reported. However, its potential risks in treating wastewater containing high concentrations of tetracycline have not been fully evaluated. In this study, the evolution of the microbial community and drug resistance was traced during the enrichment of tetracycline-degrading bacteria. The results showed that some minor compositions such as Shewanella, Bacillus, and Pseudomonas in the seed sludge became the predominant genera in the enrichment cultures when continuously using tetracycline as the sole carbon source, especially some possible pathogenic bacteria increased significantly in this process. The abundances of most TRGs/16S rDNA were increased after enrichment, although the relative abundance of tetA and tetL genes decreased to some extent. From the enrichment culture, 7 predominant tetracycline-degrading strains were isolated, of which TD-1 (Bacillus) and TD-5 (Shewanella) presented high degradation efficiencies (6-day degradation rate > 95%, half-life period of tetracycline ≈ 24 h). In addition, multiple TRGs, mobile genetic elements (MGEs) and even gene cassettes were found in each tetracycline-degrading isolate. The findings suggested that some risks such as the pathogenicity of isolates and the spread of ARGs should be considered when the biodegradation method is used to treat wastewater polluted with high concentrations of tetracycline. | 2019 | 30660087 |
| 7297 | 18 | 0.9998 | Reclaimed wastewater reuse in irrigation: Role of biofilms in the fate of antibiotics and spread of antimicrobial resistance. Reclaimed wastewater associated biofilms are made up from diverse class of microbial communities that are continuously exposed to antibiotic residues. The presence of antibiotic resistance bacteria (ARB) and their associated antibiotic resistance genes (ARGs) ensures also a continuous selection pressure on biofilms that could be seen as hotspots for antibiotic resistance dissemination but can also play a role in antibiotic degradation. In this study, the antibiotic degradation and the abundance of four ARGs (qnrS, sul1, blaTEM, ermB), and two mobile genetic elements (MGEs) including IS613 and intl1, were followed in reclaimed wastewater and biofilm samples collected at the beginning and after 2 weeks of six antibiotics exposure (10 µg L(-1)). Antibiotics were partially degraded and remained above lowest minimum inhibitory concentration (MIC) for environmental samples described in the literature. The most abundant genes detected both in biofilms and reclaimed wastewater were sul1, ermB, and intl1. The relative abundance of these genes in biofilms increased during the 2 weeks of exposure but the highest values were found in control samples (without antibiotics pressure), suggesting that bacterial community composition and diversity are the driven forces for resistance selection and propagation in biofilms, rather than exposure to antibiotics. Planktonic and biofilm bacterial communities were characterized. Planktonic cells are classically defined "as free flowing bacteria in suspension" as opposed to the sessile state (the so-called biofilm): "a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living. surface" as stated by Costerton et al. (1999). The abundance of some genera known to harbor ARG such as Streptococcus, Exiguobacterium, Acholeplasma, Methylophylaceae and Porphyromonadaceae increased in reclaimed wastewater containing antibiotics. The presence of biofilm lowered the level of these genera in wastewater but, at the opposite, could also serve as a reservoir of these bacteria to re-colonize low-diversity wastewater. It seems that maintaining a high diversity is important to limit the dissemination of antimicrobial resistance among planktonic bacteria. Antibiotics had no influence on the biofilm development monitored with optical coherence tomography (OCT). Further research is needed in order to clarify the role of inter-species communication in biofilm on antibiotic degradation and resistance development and spreading. | 2022 | 35841791 |
| 7395 | 19 | 0.9998 | Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The impact of human activity on the selection for antibiotic resistance in the environment is largely unknown, although considerable amounts of antibiotics are introduced through domestic wastewater and farm animal waste. Selection for resistance may occur by exposure to antibiotic residues or by co-selection for mobile genetic elements (MGEs) which carry genes of varying activity. Class 1 integrons are genetic elements that carry antibiotic and quaternary ammonium compound (QAC) resistance genes that confer resistance to detergents and biocides. This study aimed to investigate the prevalence and diversity of class 1 integron and integron-associated QAC resistance genes in bacteria associated with industrial waste, sewage sludge and pig slurry. We show that prevalence of class 1 integrons is higher in bacteria exposed to detergents and/or antibiotic residues, specifically in sewage sludge and pig slurry compared with agricultural soils to which these waste products are amended. We also show that QAC resistance genes are more prevalent in the presence of detergents. Studies of class 1 integron prevalence in sewage sludge amended soil showed measurable differences compared with controls. Insertion sequence elements were discovered in integrons from QAC contaminated sediment, acting as powerful promoters likely to upregulate cassette gene expression. On the basis of this data, >1 × 10(19) bacteria carrying class 1 integrons enter the United Kingdom environment by disposal of sewage sludge each year. | 2011 | 21368907 |