Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
383501.0000Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of bla(TEM-1) expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.202438521779
382710.9999The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Antimicrobial resistance (AMR) in bacteria implies a tradeoff between the benefit of resistance under antimicrobial selection pressure and the incurred fitness cost in the absence of antimicrobials. The fitness cost of a resistance determinant is expected to depend on its genetic support, such as a chromosomal mutation or a plasmid acquisition, and on its impact on cell metabolism, such as an alteration in an essential metabolic pathway or the production of a new enzyme. To provide a global picture of the factors that influence AMR fitness cost, we conducted a systematic review and meta-analysis focused on a single species, Escherichia coli. By combining results from 46 high-quality studies in a multilevel meta-analysis framework, we find that the fitness cost of AMR is smaller when provided by horizontally transferable genes such as those encoding beta-lactamases, compared to mutations in core genes such as those involved in fluoroquinolone and rifampicin resistance. We observe that the accumulation of acquired AMR genes imposes a much smaller burden on the host cell than the accumulation of AMR mutations, and we provide quantitative estimates of the additional cost of a new gene or mutation. These findings highlight that gene acquisition is more efficient than the accumulation of mutations to evolve multidrug resistance, which can contribute to the observed dominance of horizontally transferred genes in the current AMR epidemic.202337455716
383720.9999Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.201626668183
383630.9999Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.201222048956
381740.9999A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Uneven distribution of plasmid-based expression vectors to daughter cells during bacterial cell division results in an increasing proportion of plasmid free cells during growth. This is a major industrial problem leading to reduction of product yields and increased production costs during large-scale cultivation of vector-carrying bacteria. For this reason, a selection must be provided that kills the plasmid free cells. The most conventional method to obtain this desired selection is to insert some gene for antibiotic resistance in the plasmid and then grow the bacteria in the presence of the corresponding antibiotic. We describe here a host/plasmid Escherichia coli system with a totally stable plasmid that can be maintained without the use of antibiotic selection. The plasmid is maintained, since it carries the small essential gene infA (coding for translation initiation factor 1, IF1) in an E. coli strain that has been deleted for its chromosomal infA gene. As a result only plasmid carrying cells can grow, making the strain totally dependent on the maintenance of the plasmid. A selection based on antibiotics is thus not necessary during cultivation, and no antibiotic-resistance genes are present neither in the final strain nor in the final plasmid. Plasmid-free cells do not accumulate even after an extended period of continuous growth. Growth rates of the control and the plasmid harboring strains are indistinguishable from each other in both LB and defined media. The indicated approach can be used to modify existing production strains and plasmids to the described concept. The infA based plasmid stability system should eliminate industrial cultivation problems caused by the loss of expression vector and use of antibiotics in the cultivation medium. Also environmental problems caused by release of antibiotics and antibiotic resistance genes, that potentially can give horizontal gene transfer between bacterial populations, are eliminated.200415196766
382850.9999Interaction with a phage gene underlie costs of a β-lactamase. The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, bla(TEM-116*), that conferred a significant cost in one Escherichia coli strain but was close to neutral in 11 other Escherichia spp. strains. Selection of a bla(TEM-116*)-encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, relA(P1). When the wild-type relA(P1) gene was added to a strain in which it was not present and in which bla(TEM-116*) was neutral, it caused the ARG to become costly. Thus, relA(P1) is both necessary and sufficient to explain bla(TEM-116*) costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.202438194254
426960.9999Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such as Escherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in "whole-cell" modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the "whole-colony" scale, we embedded multiple instances of a whole-cell E. coli model within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response of E. coli to two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival.202337327241
381670.9999Persistence and reversal of plasmid-mediated antibiotic resistance. In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance.201729162798
416880.9999Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Natural transformation can lead to exchange of DNA between taxonomically diverse bacteria. In the case of chromosomal DNA, homology-based recombination with the recipient genome is usually necessary for heritable stability. In our recent study, we have shown that natural transformation can promote the transfer of transposons, IS elements, and integrons and gene cassettes, largely independent of the genetic relationship between the donor and recipient bacteria. Additional results from our study suggest that natural transformation with species-foreign DNA might result in the uptake of a wide range of DNA fragments; leading to changes in the antimicrobial susceptibility profile and contributing to the generation of antimicrobial resistance in bacteria.201223482877
926790.9999Off-Target Integron Activity Leads to Rapid Plasmid Compensatory Evolution in Response to Antibiotic Selection Pressure. Integrons are mobile genetic elements that have played an important role in the dissemination of antibiotic resistance. Under stress, the integron can generate combinatorial variation in resistance cassette expression by cassette reshuffling, accelerating the evolution of resistance. However, the flexibility of the integron integrase site recognition motif hints at potential off-target effects of the integrase on the rest of the genome that may have important evolutionary consequences. Here, we test this hypothesis by selecting for increased-piperacillin-resistance populations of Pseudomonas aeruginosa with a mobile integron containing a difficult-to-mobilize β-lactamase cassette to minimize the potential for adaptive cassette reshuffling. We found that integron activity can decrease the overall survival rate but also improve the fitness of the surviving populations. Off-target inversions mediated by the integron accelerated plasmid adaptation by disrupting costly conjugative genes otherwise mutated in control populations lacking a functional integrase. Plasmids containing integron-mediated inversions were associated with lower plasmid costs and higher stability than plasmids carrying mutations albeit at the cost of a reduced conjugative ability. These findings highlight the potential for integrons to create structural variation that can drive bacterial evolution, and they provide an interesting example showing how antibiotic pressure can drive the loss of conjugative genes. IMPORTANCE Tackling the public health challenge created by antibiotic resistance requires understanding the mechanisms driving its evolution. Mobile integrons are widespread genetic platforms heavily involved in the spread of antibiotic resistance. Through the action of the integrase enzyme, integrons allow bacteria to capture, excise, and shuffle antibiotic resistance gene cassettes. This integrase enzyme is characterized by its ability to recognize a wide range of recombination sites, which allows it to easily capture diverse resistance cassettes but which may also lead to off-target reactions with the rest of the genome. Using experimental evolution, we tested the off-target impact of integron activity. We found that integrons increased the fitness of the surviving bacteria through extensive genomic rearrangements of the plasmids carrying the integrons, reducing their ability to spread horizontally. These results show that integrons not only accelerate resistance evolution but also can generate extensive structural variation, driving bacterial evolution beyond antibiotic resistance.202336840554
9279100.9999Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli. Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation). The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance.201222574114
3826110.9999Co-resistance: an opportunity for the bacteria and resistance genes. Co-resistance involves transfer of several genes into the same bacteria and/or the acquisition of mutations in different genetic loci affecting different antimicrobials whereas pleiotropic resistance implies the same genetic event affecting several antimicrobials. There is an increasing prevalence of isolates with co-resistance which are over-represented within the so-called high-risk clones. Compensatory events avoid fitness cost of co-resistance, even in the absence of antimicrobials. Nevertheless, they might be selected by different antimicrobials and a single agent might select co-resistant isolates. This process, named as co-selection, is not avoided with cycling or mixing strategies of antimicrobial use. Co-resistance and co-selection processes increase the opportunity for persistence of the bacteria and resistance genes and should be considered when designing strategies for decreasing antimicrobial resistance.201121840259
3833120.9998Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram-negative bacteria harbouring conjugative drug resistance-conferring plasmids. The counter-selection against the plasmid was shown to be effective, reducing the frequency of multidrug-resistant bacteria that formed via horizontal transfer by several orders of magnitude. This was true also in the presence of an antibiotic against which the plasmid provided resistance. Majority of the multiresistant bacteria subjected to phage selection also lost their conjugation capability. Overall this study suggests that, while we are obligated to maintain the selection for the spread of the drug resistances, the 'fight evolution with evolution' approach could help us even out the outcome to our favour.201324062801
9310130.9998Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids.19846319093
3831140.9998The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities.202337505800
3795150.9998Gene transfer between Salmonella enterica serovar Typhimurium inside epithelial cells. Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed.200211914355
3797160.9998Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.201424955767
9259170.9998Static recipient cells as reservoirs of antibiotic resistance during antibiotic therapy. How does taking the full course of antibiotics prevent antibiotic resistant bacteria establishing in patients? We address this question by testing the possibility that horizontal/lateral gene transfer (HGT) is critical for the accumulation of the antibiotic-resistance phenotype while bacteria are under antibiotic stress. Most antibiotics prevent bacterial reproduction, some by preventing de novo gene expression. Nevertheless, in some cases and at some concentrations, the effects of most antibiotics on gene expression may not be irreversible. If the stress is removed before the bacteria are cleared from the patients by normal turnover, gene expression restarts, converting the residual population to phenotypic resistance. Using mathematical models we investigate how static recipients of resistance genes carried by plasmids accumulate resistance genes, and how specifically an environment cycling between presence and absence of the antibiotic uniquely favors the evolution of horizontally mobile resistance genes. We found that the presence of static recipients can substantially increase the persistence of the plasmid and that this effect is most pronounced when the cost of carriage of the plasmid decreases the cell's growth rate by as much as a half or more. In addition, plasmid persistence can be enhanced even when conjugation rates are as low as half the rate required for the plasmid to persist as a parasite on its own.200616723146
9652180.9998Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment. The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing Escherichia coli lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.201729018426
3796190.9998The presence of plasmids in bacterial hosts alters phage isolation and infectivity. Antibiotic resistance genes are often carried by plasmids, which spread intra- and inter genera bacterial populations, and also play a critical role in bacteria conferring phage resistance. However, it remains unknown about the influence of plasmids present in bacterial hosts on phage isolation and subsequent infectivity. In this study, using both Escherichia coli and Pseudomonas putida bacteria containing different plasmids, eight phages were isolated and characterized in terms of phage morphology and host range analysis, in conjunction with DNA and protein sequencing. We found that plasmids can influence both the phage isolation process and phage infectivity. In particular, the isolated phages exhibited different phage plaquing infectivity towards the same bacterial species containing different plasmids. Furthermore, the presence of plasmids was found to alter the expression of bacteria membrane protein, which correlates with bacterial cell surface receptors recognized by phages, thus affecting phage isolation and infectivity. Given the diverse and ubiquitous nature of plasmids, our findings highlight the need to consider plasmids as factors that can influence both phage isolation and infectivity.202237938681