# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 382 | 0 | 1.0000 | Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Animal studies with Streptococcus pneumoniae have provided valuable models for drug development. In order to monitor long-term pneumococcal infections noninvasively in living mice, a novel gram-positive lux transposon cassette, Tn4001 luxABCDE Km(r), that allows random integration of lux genes onto the bacterial chromosome was constructed. The cassette was designed so that the luxABCDE and kanamycin resistance genes were linked to form a single promoterless operon. Bioluminescence and kanamycin resistance only occur in a bacterial cell if this operon has transposed downstream of a promoter on the bacterium's chromosome. S. pneumoniae D39 was transformed with plasmid pAUL-A Tn4001 luxABCDE Km(r), and a number of highly bioluminescent colonies were recovered. Genomic DNA from the brightest D39 strain was used to transform a number of clinical S. pneumoniae isolates, and several of these strains were tested in animal models, including a pneumococcal lung infection model. Strong bioluminescent signals were seen in the lungs of the animals containing these pneumococci, allowing the course and antibiotic treatment of the infections to be readily monitored in real time in the living animals. Recovery of the bacteria from the animals showed that the bioluminescent signal corresponded to the number of CFU and that the lux construct was highly stable even after several days in vivo. We believe that this lux transposon will greatly expand the ability to evaluate drug efficacy against gram-positive bacteria in living animals using bioluminescence. | 2001 | 11292758 |
| 263 | 1 | 0.9997 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 261 | 2 | 0.9996 | Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Allelic exchange is frequently used in bacteria to generate knockout mutants in genes of interest, to carry out phenotypic analysis and learn about their function. Frequently, understanding of gene function in complex processes such as pathogenesis requires the generation of multiple mutant strains. In Pseudomonads and other non-Enterobacteriaceae, this is a time-consuming and laborious process based on the use of suicide vectors and allelic exchange of the appropriate mutant version of each gene, disrupted by a different antibiotic marker. This often implies the generation of a series of mutants for each gene, each disrupted by a different antibiotic marker, in order to obtain all possible double or multiple mutant combinations. In this work, we have modified this method by developing a set of 3 plasmid derivatives from the previously described suicide vector for allelic exchange, pKAS32, to make antibiotic marker exchange easier and thus accelerate the entire process. Briefly, the construction of each single gene knockout mutant is carried out by allelic exchange of the chromosomal gene with a mutant allele disrupted by the insertion of a kanamycin resistance cassette. When a double mutant strain is required, antibiotic marker exchange is performed in either one of the single mutants, using any of the three plasmid derivatives that carry the kanamycin resistance gene disrupted by either a chloramphenicol, gentamycin, or streptomycin resistance cassette. The single mutant strain, carrying now an antibiotic resistance marker other than kanamycin, can be used to introduce a second mutation using the original plasmid constructs, to generate a double mutant. The process can be repeated sequentially to generate multiple mutants. We have validated this method by generating strains carrying different combinations of mutations in genes encoding different transcriptional regulators of the Hrp type III secretion system in Pseudomonas syringae. We have also tested the genetic organisation and stability of the resulting mutant strains during growth in laboratory conditions as well as in planta. | 2006 | 16750581 |
| 262 | 3 | 0.9996 | Genome scanning in Haemophilus influenzae for identification of essential genes. We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented. | 1999 | 10438768 |
| 260 | 4 | 0.9995 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 6324 | 5 | 0.9995 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 377 | 6 | 0.9995 | Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosa and other gram-negative bacteria. We report the construction of two broad host range promoter-probe plasmid vectors for rapid analysis of promoters in Gram-negative bacteria. The new vectors, pME4507 and pME4510, carry carbenicillin and gentamycin resistance genes, respectively, and are small sized (4 kb) with a flexible multiple cloning site to facilitate directional cloning of putative promoter elements. The vectors allow rapid plate-based screening for promoter activities, using beta-galactosidase as the reporter enzyme. In the absence of an inserted promoter fragment, they display very low background activity, making them a useful tool for analysis of low expression level promoters. | 1998 | 9851050 |
| 387 | 7 | 0.9995 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 6313 | 8 | 0.9995 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 445 | 9 | 0.9995 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 384 | 10 | 0.9995 | Broad-host-range mobilizable suicide vectors for promoter trapping in gram-negative bacteria. Here we report the construction of three different vectors for the identification of bacterial genes induced in vitro and/or in vivo. These plasmids contain kanamycin, gentamicin, or tetracycline resistance genes as selectable markers. A promoterless cat and an improved GFP (mut3-gfp) can be used to follow the induction of gene expression by measuring chloramphenicol resistance and fluorescence, respectively. | 2002 | 12449381 |
| 420 | 11 | 0.9995 | Transferable nitrofuran resistance conferred by R-plasmids in clinical isolates of Escherichia coli. A high proportion of nitrofuran-resistant strains has been found in a collection of antibiotic-resistant Gram-negative bacteria isolated from patients with urinary tract infections. Some of the Escherichia coli carried R-plasmids that conferred resistance to nitrofurantoin and nitrofurazone. The mechanism of resistance is not clear; only in lactose non-fermenting recipients was there a decrease in the nitrofuran-reducing ability of whole-cell suspensions. One of the plasmids conferred enhanced resistance to UV light on DNA repair defective mutants but not on repair efficient strains. In some resistant strains, the total resistance was apparently the result of a combination of chromosomal and plasmid-borne genes. The presence of the plasmid may allow the development of higher resistance levels by mutation of chromosomal genes. | 1983 | 6368515 |
| 383 | 12 | 0.9994 | Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Broad-host-range, conjugative vectors with a constitutively expressed gusA gene combined with different antibiotic resistance (tetracycline, gentamicin, kanamycin) genes have been constructed. These plasmids are designed for tracking Gram-negative bacterial strains without the risk of random mutagenesis. We also constructed a set of cassettes containing a promoterless gusA gene linked with different antibiotic resistance genes for making transcriptional fusions and for cassette mutagenesis. New plasmids and cassettes can be useful tools for studying gene expression, interaction of bacteria with plants and monitoring bacteria in the environment. | 2001 | 11348677 |
| 6171 | 13 | 0.9994 | Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity. | 1985 | 3897053 |
| 9298 | 14 | 0.9994 | Delivering "Chromatic Bacteria" Fluorescent Protein Tags to Proteobacteria Using Conjugation. Recently, we published a large and versatile set of plasmids, the chromatic bacteria toolbox, to deliver eight different fluorescent protein genes and four combinations of antibiotic resistance genes to Gram-negative bacteria. Fluorescent tags are important tools for single-cell microbiology, synthetic community studies, biofilm, and host-microbe interaction studies. Using conjugation helper strain E. coli S17-1 as a donor, we show how plasmid conjugation can be used to deliver broad host range plasmids, Tn5 transposons delivery plasmids, and Tn7 transposon delivery plasmids into species belonging to the Proteobacteria. To that end, donor and recipient bacteria are grown under standard growth conditions before they are mixed and incubated under non-selective conditions. Then, transconjugants or exconjugant recipients are selected on selective media. Mutant colonies are screened using a combination of tools to ensure that the desired plasmids or transposons are present and that the colonies are not containing any surviving donors. Through conjugation, a wide range of Gram-negative bacteria can be modified without prior, often time-consuming, establishment of competent cell and electroporation procedures that need to be adjusted for every individual strain. The here presented protocol is not exclusive for the delivery of Chromatic bacteria plasmids and transposons, but can also be used to deliver other mobilizable plasmids to bacterial recipients. | 2019 | 33654996 |
| 385 | 15 | 0.9994 | Introduction of a mini-gene encoding a five-amino acid peptide confers erythromycin resistance on Bacillus subtilis and provides temporary erythromycin protection in Proteus mirabilis. A 15-bp mini-gene was introduced into Bacillus subtilis and into stable protoplast-like L-forms of Proteus mirabilis. This mini-gene encoded the peptide MVLFV and modeled a fragment of Escherichia coli 23S rRNA responsible for E. coli erythromycin (Ery) resistance. Expression of the introduced mini-gene conferred permanent Ery resistance on B. subtilis. In L-forms of P. mirabilis, the Ery-protective effect was maintained in the course of several generations. Herewith, the mechanism of Ery resistance mediated by expression of specific short peptides was shown to exist in evolutionary distant bacteria. Three new plasmids were constructed containing the gene under study transcriptionally fused with the genes encoding glutamylendopeptidase of Bacillus licheniformis or delta-endotoxin of Bacillus thuringiensis. The Ery resistance pentapeptide (E-peptide) mini-gene served as an efficient direct transcriptional reporter and allowed to select bacillar glutamylendopeptidase with improved productivity. The mini-genes encoding E-peptides may be applied as selective markers to transform both Gram-positive and Gram-negative bacteria. The small size of the E-peptide mini-genes makes them attractive selective markers for vector construction. | 2000 | 10620668 |
| 6319 | 16 | 0.9994 | Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Heteroresistance, a phenomenon where subpopulations of a bacterial isolate exhibit different susceptibilities to an antibiotic, is a growing clinical problem where the underlying genetic mechanisms in most cases remain unknown. We isolated colistin resistant mutants in Escherichia coli and Salmonella enterica serovar Typhimurium at different concentrations of colistin. Genetic analysis showed that genetically stable pmrAB point mutations were responsible for colistin resistance during selection at high drug concentrations for both species and at low concentrations for E. coli. In contrast, for S. Typhimurium mutants selected at low colistin concentrations, amplification of different large chromosomal regions conferred a heteroresistant phenotype. All amplifications included the pmrD gene, which encodes a positive regulator that up-regulates proteins that modify lipid A, and as a result increase colistin resistance. Inactivation and over-expression of the pmrD gene prevented and conferred resistance, respectively, demonstrating that the PmrD protein is required and sufficient to confer resistance. The heteroresistance phenotype is explained by the variable gene dosage of pmrD in a population, where sub-populations with different copy number of the pmrD gene show different levels of colistin resistance. We propose that variability in gene copy number of resistance genes can explain the heteroresistance observed in clinically isolated pathogenic bacteria. | 2016 | 27381382 |
| 6325 | 17 | 0.9994 | Repressed multidrug resistance genes in Streptomyces lividans. Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes. | 2003 | 12937892 |
| 379 | 18 | 0.9994 | Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. A broad host range cloning vehicle that can be mobilized at high frequency into Gram-negative bacteria has been constructed from the naturally occurring antibiotic resistance plasmid RK2. The vehicle is 20 kilobase pairs in size, encodes tetracycline resistance, and contains two single restriction enzyme sites suitable for cloning. Mobilization is effected by a helper plasmid consisting of the RK2 transfer genes linked to a ColE1 replicon. By use of this plasmid vehicle, a gene bank of the DNA from a wild-type strain of Rhizobium meliloti has been constructed and established in Escherichia coli. One of the hybrid plasmids in the bank contains a DNA insert of approximately 26 kilobase pairs which has homology to the nitrogenase structural gene region of Klebsiella pneumoniae. | 1980 | 7012838 |
| 4504 | 19 | 0.9994 | Resistance of enterococci to aminoglycosides and glycopeptides. High-level resistance to aminoglycosides in enterococci often is mediated by aminoglycoside-modifying enzymes, and the corresponding genes generally are located on self-transferable plasmids. These enzymes are similar to those in staphylococci but differ from the modifying enzymes of gram-negative bacteria. Three classes of enzymes are distinguished, depending upon the reaction catalyzed. All but amikacin and netilmicin confer high-level resistance to the antibiotics that are modified in vitro. However, the synergistic activity of these last two antibiotics in combination with beta-lactam agents can be suppressed, as has always been found in relation to high-level resistance to the aminoglycosides. Acquisition of glycopeptide resistance by enterococci recently was reported. Strains of two phenotypes have been distinguished: those that are resistant to high levels of vancomycin and teicoplanin and those that are inducibly resistant to low levels of vancomycin and susceptible to teicoplanin. In strains of Enterococcus faecium highly resistant to glycopeptides, we have characterized plasmids ranging from 34 to 40 kilobases that are often self-transferable to other gram-positive organisms. The resistance gene vanA has been cloned, and its nucleotide sequence has been determined. Hybridization experiments showed that this resistance determinant is present in all of our enterococcal strains that are highly resistant to glycopeptides. The vanA gene is part of a cluster of plasmid genes responsible for synthesis of peptidoglycan precursors containing a depsipeptide instead of the usual D-alanyl-D-alanine terminus. Reduced affinity of glycopeptides to these precursors confers resistance to the antibiotics. | 1992 | 1520800 |