Bioinformatic analysis reveals the association between bacterial morphology and antibiotic resistance using light microscopy with deep learning. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
380601.0000Bioinformatic analysis reveals the association between bacterial morphology and antibiotic resistance using light microscopy with deep learning. Although it is well known that the morphology of Gram-negative rods changes on exposure to antibiotics, the morphology of antibiotic-resistant bacteria in the absence of antibiotics has not been widely investigated. Here, we studied the morphologies of 10 antibiotic-resistant strains of Escherichia coli and used bioinformatics tools to classify the resistant cells under light microscopy in the absence of antibiotics. The antibiotic-resistant strains showed differences in morphology from the sensitive parental strain, and the differences were most prominent in the quinolone-and β-lactam-resistant bacteria. A cluster analysis revealed increased proportions of fatter or shorter cells in the antibiotic-resistant strains. A correlation analysis of morphological features and gene expression suggested that genes related to energy metabolism and antibiotic resistance were highly correlated with the morphological characteristics of the resistant strains. Our newly proposed deep learning method for single-cell classification achieved a high level of performance in classifying quinolone-and β-lactam-resistant strains.202439364166
380510.9999De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Sensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in an Escherichia coli mutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level.201627431218
380820.9999Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance.201727873258
438030.9999Comparative genome analysis of ciprofloxacin-resistant Pseudomonas aeruginosa reveals genes within newly identified high variability regions associated with drug resistance development. The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development.201323808957
624840.9998Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. BACKGROUND: Clostridium difficile are gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15-35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. CONCLUSIONS/SIGNIFICANCE: This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described.201323349739
992250.9998De novo acquisition of antibiotic resistance in six species of bacteria. Bacteria can become resistant to antibiotics in two ways: by acquiring resistance genes through horizontal gene transfer and by de novo development of resistance upon exposure to non-lethal concentrations. The importance of the second process, de novo build-up, has not been investigated systematically over a range of species and may be underestimated as a result. To investigate the DNA mutation patterns accompanying the de novo antibiotic resistance acquisition process, six bacterial species encountered in the food chain were exposed to step-wise increasing sublethal concentrations of six antibiotics to develop high levels of resistance. Phenotypic and mutational landscapes were constructed based on whole-genome sequencing at two time points of the evolutionary trajectory. In this study, we found that (1) all of the six strains can develop high levels of resistance against most antibiotics; (2) increased resistance is accompanied by different mutations for each bacterium-antibiotic combination; (3) the number of mutations varies widely, with Y. enterocolitica having by far the most; (4) in the case of fluoroquinolone resistance, a mutational pattern of gyrA combined with parC is conserved in five of six species; and (5) mutations in genes coding for efflux pumps are widely encountered in gram-negative species. The overall conclusion is that very similar phenotypic outcomes are instigated by very different genetic changes. The outcome of this study may assist policymakers when formulating practical strategies to prevent development of antimicrobial resistance in human and veterinary health care.IMPORTANCEMost studies on de novo development of antimicrobial resistance have been performed on Escherichia coli. To examine whether the conclusions of this research can be applied to more bacterial species, six species of veterinary importance were made resistant to six antibiotics, each of a different class. The rapid build-up of resistance observed in all six species upon exposure to non-lethal concentrations of antimicrobials indicates a similar ability to adjust to the presence of antibiotics. The large differences in the number of DNA mutations accompanying de novo resistance suggest that the mechanisms and pathways involved may differ. Hence, very similar phenotypes can be the result of various genotypes. The implications of the outcome are to be considered by policymakers in the area of veterinary and human healthcare.202539907470
438160.9998Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.201626820467
627970.9998Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections.201727916419
462980.9998Screening and in silico characterization of prophages in Helicobacter pylori clinical strains. The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we developed a method to identify prophages in H. pylori genomes aiming at their future use in therapy. A polymerase chain reaction (PCR)-based technique tested five primer pairs on 74 clinical H. pylori strains. After the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. This study allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Overall, we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.202539368610
380790.9998Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.200616391076
4651100.9998Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Several mechanisms are responsible for the ability of microorganisms to tolerate antibiotics, and the incidence of resistance to these compounds within bacterial species has increased since the commercial use of antibiotics became widespread. To establish the extent of and changes in the diversity of antibiotic resistance patterns in natural populations, we determined the MICs of five antibiotics for collections of enteric bacteria isolated from diverse hosts and geographic locations and during periods before and after commercial application of antibiotics began. All of the pre-antibiotic era strains were susceptible to high levels of these antibiotics, whereas 20% of strains from contemporary populations of Escherichia coli and Salmonella enterica displayed high-level resistance to at least one of the antibiotics. In addition to the increase in the frequency of high-level resistance, background levels, conferred by genes providing nonspecific low-level resistance to multiple antibiotics, were significantly higher among contemporary strains. Changes in the incidence and levels of antibiotic resistance are not confined to particular segments of the bacterial population and reflect responses to the increased exposure of bacteria to antimicrobial compounds over the past several decades.200011097921
4648110.9998Potential of phage cocktails in the inactivation of Enterobacter cloacae--An in vitro study in a buffer solution and in urine samples. The objective of this study was to compare the dynamics of three previously isolated phages for Enterobacter cloacae in order to evaluate their ability to treat urinary tract infections (UTI). The phages genomes, survival, host range, were characterized, and the host-phage dynamics was determined in culture medium and urine samples. The presence of prophages in bacteria, host recovery and development of resistance to phage after treatment was also evaluated. The growth of the E. cloacae was inhibited by the three phages, resulting in a decrease of ≈3 log. The use of cocktails with two or three phages was significantly more effective (decrease of ≈4 log). In urine, the inactivation was still effective (≈2 log). Both phages were considered safe to inactivate the bacteria (no integrase and toxin codifying genes). Some bacteria remained viable in the presence of the phages, but their colonies were smaller than those of the non-treated control and were visible only after 5 days of incubation (visible after 24h in the control). A high bacterial inactivation efficiency with phage cocktails combined with the safety of the phages and their long periods of survival, even in urine samples, paves the way for depth studies, especially in vivo studies, to control urinary tract infection and to overcome the development of resistances by the nosocomial bacterium E. cloacae.201626541317
4573120.9998High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes.202235953184
3830130.9998Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance.201930530714
6346140.9998Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics.202133675438
6335150.9998Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.202134756069
6304160.9998Genome-Wide Screening of Oxidizing Agent Resistance Genes in Escherichia coli. The use of oxidizing agents is one of the most favorable approaches to kill bacteria in daily life. However, bacteria have been evolving to survive in the presence of different oxidizing agents. In this study, we aimed to obtain a comprehensive list of genes whose expression can make Escherichiacoli cells resistant to different oxidizing agents. For this purpose, we utilized the ASKA library and performed a genome-wide screening of ~4200 E. coli genes. Hydrogen peroxide (H(2)O(2)) and hypochlorite (HOCl) were tested as representative oxidizing agents in this study. To further validate our screening results, we used different E. coli strains as host cells to express or inactivate selected resistance genes individually. More than 100 genes obtained in this screening were not known to associate with oxidative stress responses before. Thus, this study is expected to facilitate both basic studies on oxidative stress and the development of antibacterial agents.202134072091
4647170.9998Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection.201626872140
3600180.9998Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.200415305923
4829190.9998Diversity of the mechanisms of resistance to beta-lactam antibiotics. The sensitivity of a bacterium to beta-lactam antibiotics depends upon the interplay between 3 independent factors: the sensitivity of the essential penicillin-binding enzyme(s), the quantity and properties of the beta-lactamase(s) and the diffusion barrier that the outer-membrane of Gram-negative bacteria can represent. Those three factors can be modified by mutations or by the horizontal transfer of genes or portions of genes.19911961980