Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
380001.0000Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. Microbial horizontal gene transfer is a continuous process that shapes bacterial genomic adaptation to the environment and the composition of concurrent microbial ecology. This includes the potential impact of synthetic antibiotic utilization in farm animal production on overall antibiotic resistance issues; however, the mechanisms behind the evolution of microbial communities are not fully understood. We explored potential mechanisms by experimentally examining the relatedness of phylogenetic inference between multidrug-resistant Salmonella enterica serovar Typhimurium isolates and pathogenic Salmonella Typhimurium strains based on genome-wide single-nucleotide polymorphism (SNP) comparisons. Antibiotic-resistant S Typhimurium isolates in a simulated farm environment barely lost their resistance, whereas sensitive S Typhimurium isolates in soils gradually acquired higher tetracycline resistance under antibiotic pressure and manipulated differential expression of antibiotic-resistant genes. The expeditious development of antibiotic resistance and the ensuing genetic alterations in antimicrobial resistance genes in S Typhimurium warrant effective actions to control the dissemination of Salmonella antibiotic resistance.IMPORTANCE Antibiotic resistance is attributed to the misuse or overuse of antibiotics in agriculture, and antibiotic resistance genes can also be transferred to bacteria under environmental stress. In this study, we report a unidirectional alteration in antibiotic resistance from susceptibility to increased resistance. Highly sensitive Salmonella enterica serovar Typhimurium isolates from organic farm systems quickly acquired tetracycline resistance under antibiotic pressure in simulated farm soil environments within 2 weeks, with expression of antibiotic resistance-related genes that was significantly upregulated. Conversely, originally resistant S Typhimurium isolates from conventional farm systems lost little of their resistance when transferred to environments without antibiotic pressure. Additionally, multidrug-resistant S Typhimurium isolates genetically shared relevancy with pathogenic S Typhimurium isolates, whereas susceptible isolates clustered with nonpathogenic strains. These results provide detailed discussion and explanation about the genetic alterations and simultaneous acquisition of antibiotic resistance in S Typhimurium in agricultural environments.201830054356
383010.9999Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance.201930530714
465120.9999Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Several mechanisms are responsible for the ability of microorganisms to tolerate antibiotics, and the incidence of resistance to these compounds within bacterial species has increased since the commercial use of antibiotics became widespread. To establish the extent of and changes in the diversity of antibiotic resistance patterns in natural populations, we determined the MICs of five antibiotics for collections of enteric bacteria isolated from diverse hosts and geographic locations and during periods before and after commercial application of antibiotics began. All of the pre-antibiotic era strains were susceptible to high levels of these antibiotics, whereas 20% of strains from contemporary populations of Escherichia coli and Salmonella enterica displayed high-level resistance to at least one of the antibiotics. In addition to the increase in the frequency of high-level resistance, background levels, conferred by genes providing nonspecific low-level resistance to multiple antibiotics, were significantly higher among contemporary strains. Changes in the incidence and levels of antibiotic resistance are not confined to particular segments of the bacterial population and reflect responses to the increased exposure of bacteria to antimicrobial compounds over the past several decades.200011097921
382630.9998Co-resistance: an opportunity for the bacteria and resistance genes. Co-resistance involves transfer of several genes into the same bacteria and/or the acquisition of mutations in different genetic loci affecting different antimicrobials whereas pleiotropic resistance implies the same genetic event affecting several antimicrobials. There is an increasing prevalence of isolates with co-resistance which are over-represented within the so-called high-risk clones. Compensatory events avoid fitness cost of co-resistance, even in the absence of antimicrobials. Nevertheless, they might be selected by different antimicrobials and a single agent might select co-resistant isolates. This process, named as co-selection, is not avoided with cycling or mixing strategies of antimicrobial use. Co-resistance and co-selection processes increase the opportunity for persistence of the bacteria and resistance genes and should be considered when designing strategies for decreasing antimicrobial resistance.201121840259
770540.9998Oxytetracycline reduces the diversity of tetracycline-resistance genes in the Galleria mellonella gut microbiome. BACKGROUND: Clinically-relevant multidrug resistance is sometimes present in bacteria not exposed to human-made antibiotics, in environments without extreme selective pressures, such as the insect gut. The use of antibiotics on naïve microbiomes often leads to decreased microbe diversity and increased antibiotic resistance. RESULTS: Here we investigate the impact of antibiotics on the insect gut microbiome by identifying tetracycline-resistance genes in the gut bacteria of greater wax moth (Galleria mellonella) larvae, feeding on artificial food containing oxytetracycline. We determined that G. mellonella can be raised on artificial food for over five generations and that the insects tolerate low doses of antibiotics in their diets, but doses of oxytetracycline higher than sub-inhibitory lead to early larval mortality. In our experiments, greater wax moth larvae had a sparse microbiome, which is consistent with previous findings. Additionally, we determined that the microbiome of G. mellonella larvae not exposed to antibiotics carries a number of tetracycline-resistance genes and some of that diversity is lost upon exposure to strong selective pressure. CONCLUSIONS: We show that G. mellonella larvae can be raised on artificial food, including antibiotics, for several generations and that the microbiome can be sampled. We show that, in the absence of antibiotics, the insect gut microbiome can maintain a diverse pool of tetracycline-resistance genes. Selective pressure, from exposure to the antibiotic oxytetracycline, leads to microbiome changes and alteration in the tetracycline-resistance gene pool.201830594143
992250.9998De novo acquisition of antibiotic resistance in six species of bacteria. Bacteria can become resistant to antibiotics in two ways: by acquiring resistance genes through horizontal gene transfer and by de novo development of resistance upon exposure to non-lethal concentrations. The importance of the second process, de novo build-up, has not been investigated systematically over a range of species and may be underestimated as a result. To investigate the DNA mutation patterns accompanying the de novo antibiotic resistance acquisition process, six bacterial species encountered in the food chain were exposed to step-wise increasing sublethal concentrations of six antibiotics to develop high levels of resistance. Phenotypic and mutational landscapes were constructed based on whole-genome sequencing at two time points of the evolutionary trajectory. In this study, we found that (1) all of the six strains can develop high levels of resistance against most antibiotics; (2) increased resistance is accompanied by different mutations for each bacterium-antibiotic combination; (3) the number of mutations varies widely, with Y. enterocolitica having by far the most; (4) in the case of fluoroquinolone resistance, a mutational pattern of gyrA combined with parC is conserved in five of six species; and (5) mutations in genes coding for efflux pumps are widely encountered in gram-negative species. The overall conclusion is that very similar phenotypic outcomes are instigated by very different genetic changes. The outcome of this study may assist policymakers when formulating practical strategies to prevent development of antimicrobial resistance in human and veterinary health care.IMPORTANCEMost studies on de novo development of antimicrobial resistance have been performed on Escherichia coli. To examine whether the conclusions of this research can be applied to more bacterial species, six species of veterinary importance were made resistant to six antibiotics, each of a different class. The rapid build-up of resistance observed in all six species upon exposure to non-lethal concentrations of antimicrobials indicates a similar ability to adjust to the presence of antibiotics. The large differences in the number of DNA mutations accompanying de novo resistance suggest that the mechanisms and pathways involved may differ. Hence, very similar phenotypes can be the result of various genotypes. The implications of the outcome are to be considered by policymakers in the area of veterinary and human healthcare.202539907470
418060.9998Toward integrative genomics study of genetic resistance to Salmonella and Campylobacter intestinal colonization in fowl. Salmonella enterica serotypes Enteritidis and Typhimurium and Campylobacter jejuni are responsible for most cases of food poisoning in Europe. These bacteria do not cause severe disease symptoms in chicken, but they are easily propagated by symptomless chicken carriers which cannot be easily isolated. This animal tolerance is detrimental to food safety. In this particular case, increasing animal's resistance is not sufficient, since some animals considered as resistant are able to carry bacteria during several weeks without displaying disease symptoms. We review studies aimed at evaluating the resistance of chicken to Salmonella and Campylobacter intestinal colonization, either a few days or several weeks after infection. While studies of the genetic control of Campylobacter colonization are only beginning, mostly due to technical difficulties in infection protocols, genetic studies of Salmonella colonization have been conducted for now more than 20 years. They have initially reported an estimation of the genetic parameters associated with resistance to Salmonella colonization and are now aimed at identifying the genomic regions controlling variation of this trait in experimental lines and commercial populations. With the advent of high-throughput genomics, we are closer than ever to identify the true genes controlling resistance to Enterobacteria colonization in chicken. The comparison of genes involved in early resistance to intestinal colonization with genes controlling resistance to bacteria persistence several weeks after infection (i.e., carrier-state) should soon highlight the differences between the molecular mechanisms underlying those two distinct phenotypes. It will also be highly interesting to compare the genes or genomic regions controlling Campylobacter and Salmonella, in order to evaluate the feasibility of a selection conducted on both bacteria simultaneously.201223412643
380770.9998Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.200616391076
379980.9998Antibiotic Degradation by Commensal Microbes Shields Pathogens. The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.202031964746
382090.9998Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.201425293762
4128100.9998Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin). Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers). Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria.201425317117
3829110.9998Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates. The spread of antibiotic resistance is driving interest in new approaches to control bacterial pathogens. This includes applying multiple antibiotics strategically, using bacteriophages against antibiotic-resistant bacteria, and combining both types of antibacterial agents. All these approaches rely on or are impacted by associations among resistance phenotypes (where bacteria resistant to one antibacterial agent are also relatively susceptible or resistant to others). Experiments with laboratory strains have shown strong associations between some resistance phenotypes, but we lack a quantitative understanding of associations among antibiotic and phage resistance phenotypes in natural and clinical populations. To address this, we measured resistance to various antibiotics and bacteriophages for 94 natural and clinical Escherichia coli isolates. We found several positive associations between resistance phenotypes across isolates. Associations were on average stronger for antibacterial agents of the same type (antibiotic-antibiotic or phage-phage) than different types (antibiotic-phage). Plasmid profiles and genetic knockouts suggested that such associations can result from both colocalization of resistance genes and pleiotropic effects of individual resistance mechanisms, including one case of antibiotic-phage cross-resistance. Antibiotic resistance was predicted by core genome phylogeny and plasmid profile, but phage resistance was predicted only by core genome phylogeny. Finally, we used observed associations to predict genes involved in a previously uncharacterized phage resistance mechanism, which we verified using experimental evolution. Our data suggest that susceptibility to phages and antibiotics are evolving largely independently, and unlike in experiments with lab strains, negative associations between antibiotic resistance phenotypes in nature are rare. This is relevant for treatment scenarios where bacteria encounter multiple antibacterial agents.IMPORTANCE Rising antibiotic resistance is making it harder to treat bacterial infections. Whether resistance to a given antibiotic spreads or declines is influenced by whether it is associated with altered susceptibility to other antibiotics or other stressors that bacteria encounter in nature, such as bacteriophages (viruses that infect bacteria). We used natural and clinical isolates of Escherichia coli, an abundant species and key pathogen, to characterize associations among resistance phenotypes to various antibiotics and bacteriophages. We found associations between some resistance phenotypes, and in contrast to past work with laboratory strains, they were exclusively positive. Analysis of bacterial genome sequences and horizontally transferred genetic elements (plasmids) helped to explain this, as well as our finding that there was no overall association between antibiotic resistance and bacteriophage resistance profiles across isolates. This improves our understanding of resistance evolution in nature, potentially informing new rational therapies that combine different antibacterials, including bacteriophages.201729089428
4127120.9998The Perfect Condition for the Rising of Superbugs: Person-to-Person Contact and Antibiotic Use Are the Key Factors Responsible for the Positive Correlation between Antibiotic Resistance Gene Diversity and Virulence Gene Diversity in Human Metagenomes. Human metagenomes with a high diversity of virulence genes tend to have a high diversity of antibiotic-resistance genes and vice-versa. To understand this positive correlation, we simulated the transfer of these genes and bacterial pathogens in a community of interacting people that take antibiotics when infected by pathogens. Simulations show that people with higher diversity of virulence and resistance genes took antibiotics long ago, not recently. On the other extreme, we find people with low diversity of both gene types because they took antibiotics recently-while antibiotics select specific resistance genes, they also decrease gene diversity by eliminating bacteria. In general, the diversity of virulence and resistance genes becomes positively correlated whenever the transmission probability between people is higher than the probability of losing resistance genes. The positive correlation holds even under changes of several variables, such as the relative or total diversity of virulence and resistance genes, the contamination probability between individuals, the loss rate of resistance genes, or the social network type. Because the loss rate of resistance genes may be shallow, we conclude that the transmission between people and antibiotic usage are the leading causes for the positive correlation between virulence and antibiotic-resistance genes.202134065307
3811130.9998Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Genes introduced by horizontal gene transfer (HGT) from other species constitute a significant portion of many bacterial genomes, and the evolutionary dynamics of HGTs are important for understanding the spread of antibiotic resistance and the emergence of new pathogenic strains of bacteria. The fitness effects of the transferred genes largely determine the fixation rates and the amount of neutral diversity of newly acquired genes in bacterial populations. Comparative analysis of bacterial genomes provides insight into what genes are commonly transferred, but direct experimental tests of the fitness constraints on HGT are scarce. Here, we address this paucity of experimental studies by introducing 98 random DNA fragments varying in size from 0.45 to 5 kb from Bacteroides, Proteus, and human intestinal phage into a defined position in the Salmonella chromosome and measuring the effects on fitness. Using highly sensitive competition assays, we found that eight inserts were deleterious with selection coefficients (s) ranging from ≈ -0.007 to -0.02 and 90 did not have significant fitness effects. When inducing transcription from a PBAD promoter located at one end of the insert, 16 transfers were deleterious and 82 were not significantly different from the control. In conclusion, a major fraction of the inserts had minor effects on fitness implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at selection-transfer balance and serve as raw material for the evolution of novel beneficial functions.201424536043
3797140.9998Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.201424955767
4050150.9998Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases.202235740113
4573160.9998High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes.202235953184
3906170.9998Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island". The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.201526088177
4075180.9998Antimicrobial resistance in foodborne pathogens--a cause for concern? The widespread use of antibiotics in food animal production systems has resulted in the emergence of antibiotic resistant zoonotic bacteria that can be transmitted to humans through the food chain. Infection with antibiotic resistant bacteria negatively impacts on public health, due to an increased incidence of treatment failure and severity of disease. Development of resistant bacteria in food animals can result from chromosomal mutations but is more commonly associated with the horizontal transfer of resistance determinants borne on mobile genetic elements. Food may represent a dynamic environment for the continuing transfer of antibiotic resistance determinants between bacteria. Current food preservation systems that use a combination of environmental stresses to reduce growth of bacteria, may serve to escalate development and dissemination of antibiotic resistance among food related pathogens. The increasing reliance on biocides for pathogen control in food production and processing, heightens the risk of selection of biocide-resistant strains. Of particular concern is the potential for sublethal exposure to biocides to select for bacteria with enhanced multi-drug efflux pump activity capable of providing both resistance to biocides and cross-resistance to multiple antibiotics. Although present evidence suggests that biocide resistance is associated with a physiological cost, the possibility of the development of adaptive mutations conferring increased fitness cannot be ruled-out. Strategies aimed at inhibiting efflux pumps and eliminating plasmids could help to restore therapeutic efficacy to antibiotics and reduce the spread of antibiotic resistant foodborne pathogens through the food chain.200818781926
4222190.9998Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.202134076710