# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3760 | 0 | 1.0000 | Emergence of recurrent urinary tract infection: Dissecting the mechanism of antimicrobial resistance, host-pathogen interaction, and hormonal imbalance. Urinary tract infection is one of the most common infections worldwide, causing numerous deaths every year. The gut-bladder axis has been recently found to be a key factor in initiating UTI pathogenesis, along with the imbalance in the gut microbiome, which is associated with advanced susceptibility to rUTI. The patients who suffer from UTIs are, more often than not, the ones who have the lowest levels of butyrate-producing gut bacteria. Antibiotics cause dysbiosis in the gut and increase the growth of uropathogenic strains. Moreover, the gut-vagina and vagina-bladder axes are involved in UTIs by transferring microbial species, modulating the immune response, and developing intracellular bacterial reservoirs in the bladder. The rising usage of antibiotics has raised antimicrobial resistance (AMR) worldwide and recently worsened the treatment of UTIs. Resistance mechanisms include enzymatic hydrolysis of antibiotics, efflux systems, biofilm formation, horizontal gene transfer, and a weakened host's immune system, allowing bacteria to escape from the treatments. Besides, in pregnant women and adolescents, the alterations in sex hormone levels increase the risk of rUTIs. Knowledge of microbiota that inhabit the gut-vagina and vagina-bladder axes might lead to the invention of nonantibiotic preventive and therapeutic techniques in the future. In conclusion, this review emphasizes the need for a study to understand the host-microbe interactions, gut health, and AMR to effectively deal with and prevent recurrent UTIs. Also, the review explores a comprehensive analysis of the epigenetic network between host UTIs and marker genes in E. coli. The analysis showed seven genes associated with UTIs, namely, CXCL8, CDKN2A, RB1, EGFR, TP53, KRAS, and HRAS, are also implicated in bladder cancer. | 2025 | 40373943 |
| 9112 | 1 | 0.9994 | Non-antibiotic methods against Pseudomonas aeruginosa include QS inhibitors: a narrative review. The prevalence of antibiotic resistance is a growing worldwide problem in the control of pathogens, particularly negative bacteria that are resistant to antibiotics, Pseudomonas aeruginosa (PA) is one of these bacteria. The development of new effective antibiotics is time-consuming and costly, and the new antibiotics may become resistant again. Therefore, non-antibiotic clinical treatment for antibiotic-resistant PA infection is necessary and needs to be strengthened. The antibiotic resistance (AR) mechanism of PA is complex. Biofilm formation is one of the reasons why its resistance is difficult to overcome. The formation of biofilms is mainly regulated by quorum sensing (QS). QS is a mechanism by which PA increases its virulence by producing small diffusible molecules, which regulates a series of genes associated with virulence and nutrient acquisition. QS inhibitors are potions that obstruct QS systems in bacteria and destruction of virulence. This review summarizes AR mechanism of PA, Basic knowledge of QS of PA and some non-antibiotic methods for inhibiting PA, including QS inhibitors, which have potential and far-reaching significance for antibiotic-resistant PA's clinical treatment. The review helps to provide new ideas and new schemes for clinical anti-PA infection research and treatment, and has positive significance for delaying the occurrence of bacterial drug resistance and antibiotic use management. | 2021 | 34044573 |
| 9496 | 2 | 0.9994 | Biofilm Lifestyle in Recurrent Urinary Tract Infections. Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies. | 2023 | 36676100 |
| 9517 | 3 | 0.9994 | Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms. | 2023 | 37401756 |
| 8970 | 4 | 0.9993 | Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile. | 2024 | 39272551 |
| 9682 | 5 | 0.9993 | Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells. | 2022 | 36145418 |
| 6677 | 6 | 0.9993 | Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? OBJECTIVE: To raise awareness of the role of environmental biofilm in the emergence and spread of antibiotic resistance and its consideration in antimicrobial stewardship. BACKGROUND: Antibiotic resistance is a major threat to public health. Overuse of antibiotics, increased international travel, and genetic promiscuity amongst bacteria have contributed to antibiotic resistance, and global containment efforts have so far met with limited success. Antibiotic resistance is a natural mechanism by which bacteria have adapted to environmental threats over billions of years and is caused either by genetic mutations or by horizontal gene transfer. Another ancient survival strategy involves bacteria existing within a self-produced polymeric matrix, which today is termed biofilm. Biofilm similarly enables bacterial tolerance to environmental threats, and also encourages the transfer of antibiotic resistance genes between bacterial species. This natural and ubiquitous mode of bacterial life has not been considered amongst strategies to tackle antibiotic resistance in healthcare facilities, despite its ability to significantly enhance bacterial survival and persistence, and to encourage antibiotic resistance. CONCLUSION: Biofilm must be considered synonymously with antibiotic resistance because of its proficiency in transferring resistance genes as well as its innate phenotypic tolerance to antibiotics. Although biofilm falls outside of the current definition of antimicrobial stewardship, greater awareness of the existence, ubiquity, and consequences of environmental biofilm amongst healthcare practitioners is crucial to improving hygiene practices and controlling the emergence and spread of antibiotic resistance in healthcare facilities. | 2020 | 33081846 |
| 9441 | 7 | 0.9993 | Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria. | 2022 | 35949048 |
| 9111 | 8 | 0.9993 | Quorum sensing system: Target to control the spread of bacterial infections. Quorum Sensing (QS) systems regulate the gene expression of different types of virulence factors in accordance with the cell population density. A literature search was performed, including electronic databases such as MEDLINE/PubMed, SciELO, and LILACS, as well as other databases not indexed, such as Google Scholar. The search was conducted between July 2018 and April 2019, through online research. Antimicrobial resistance is one of the biggest threats to global health and the dissemination of resistant microbes in the environment is a major public health problem. Therefore, it is important to develop new therapies to control the spread of resistant bacteria to humans. Thus, interference in the chemical signal (autoinducers) of the QS system has been postulated as a good alternative, technically known as "Quorum Quenching" or QS inhibitors. Inhibition of QS signaling is not intended to kill the microorganism, but to block the expression of the target genes, making the cells less virulent and more vulnerable to host immune response. Anti-virulence therapy by agents that interfere with this system in pathogenic bacteria is a well-studied strategy, including medicinal plants and their bioactive constituents, and presents good prospects. This review aims to provide an overview of the QS system in bacteria and describe the main inhibitors of the system. | 2020 | 32061914 |
| 4292 | 9 | 0.9993 | The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. BACKGROUND: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. METHODS/PRINCIPAL FINDINGS: A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. CONCLUSIONS/SIGNIFICANCE: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance. | 2008 | 19112501 |
| 9457 | 10 | 0.9993 | Exploring the role of gut microbiota in antibiotic resistance and prevention. BACKGROUND/INTRODUCTION: Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY: This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION: Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation. | 2025 | 40096354 |
| 9431 | 11 | 0.9993 | Biofilms and antimicrobial resistance. The pathogenesis of many orthopaedic infections is related to the presence of microorganisms in biofilms. I examine the emerging understanding of the mechanisms of biofilm-associated antimicrobial resistance. Biofilm-associated resistance to antimicrobial agents begins at the attachment phase and increases as the biofilm ages. A variety of reasons for the increased antimicrobial resistance of microorganisms in biofilms have been postulated and investigated. Although bacteria in biofilms are surrounded by an extracellular matrix that might physically restrict the diffusion of antimicrobial agents, this does not seem to be a predominant mechanism of biofilm-associated antimicrobial resistance. Nutrient and oxygen depletion within the biofilm cause some bacteria to enter a nongrowing (ie, stationary) state, in which they are less susceptible to growth-dependent antimicrobial killing. A subpopulation of bacteria might differentiate into a phenotypically resistant state. Finally, some organisms in biofilms have been shown to express biofilm-specific antimicrobial resistance genes that are not required for biofilm formation. Overall, the mechanism of biofilm-associated antimicrobial resistance seems to be multifactorial and may vary from organism to organism. Techniques that address biofilm susceptibility testing to antimicrobial agents may be necessary before antimicrobial regimens for orthopaedic prosthetic device-associated infections can be appropriately defined in research and clinical settings. Finally, a variety of approaches are being defined to overcome biofilm-associated antimicrobial resistance. | 2005 | 16056024 |
| 9432 | 12 | 0.9993 | Disinfectants and antiseptics: mechanisms of action and resistance. Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts. | 2024 | 37648789 |
| 8848 | 13 | 0.9993 | Harnessing the effect of iron deprivation to attenuate the growth of opportunistic pathogen Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen having high infectivity among immunocompromised patients. The bacteria are resistant to major first-line antibiotics and have become a serious concern in the aspect of nosocomial and community-acquired infections. To overcome this dire situation, the necessity of introducing new approaches is undeniable, which can bypass the need for conventional antibiotic therapy. In this article, we have pinpointed the importance of iron in A. baumannii. Iron is an essential micronutrient in all bacteria. Loss of iron acquisition leads to membrane destabilization, and change in the expression of iron-transporting or -metabolizing genes causes death of the bacteria. Iron scavenging was primarily mediated by different chelators, and β-thujaplicin showed the best antibacterial efficacy with respect to time killing assay and CFU analysis. When iron (Fe(2+)) was supplemented after initial deficiency, the growth of the bacteria was seen to be restored. Iron deprivation also disintegrates the biofilm matrix, a major cause of bacterial resistance against different types of antibiotics. Moreover, iron scavenging promotes inhibition of biofilm sessile persister cells, the root cause of recalcitrant and chronic infection. As a part of antimicrobial therapy, β-thujaplicin was treated alongside colistin and chloramphenicol at an amount significantly lower than its MIC value. Our results indicated that β-thujaplicin nicely complemented those antibiotics to potentiate their antimicrobial action. In a nutshell, iron chelating agents are potential alternative therapeutics that can be used alongside different antibiotics to circumvent the resistance of different nosocomial pathogens. | 2025 | 40202344 |
| 9439 | 14 | 0.9993 | Antimicrobial resistance, mechanisms and its clinical significance. Antimicrobial agents play a key role in controlling and curing infectious disease. Soon after the discovery of the first antibiotic, the challenge of antibiotic resistance commenced. Antimicrobial agents use different mechanisms against bacteria to prevent their pathogenesis and they can be classified as bactericidal or bacteriostatic. Antibiotics are one of the antimicrobial agents which has several classes, each with different targets. Consequently, bacteria are endlessly using methods to overcome the effectivity of the antibiotics by using distinct types of mechanisms. Comprehending the mechanisms of resistance is vital for better understanding and to continue use of current antibiotics. Which also helps to formulate synthetic antimicrobials to overcome the current mechanism of resistance. Also, encourage in prudent use and misuse of antimicrobial agents. Thus, decline in treatment costs and in the rate of morbidity and mortality. This review will be concentrating on the mechanism of actions of several antibiotics and how bacteria develop resistance to them, as well as the method of acquiring the resistance in several bacteria and how can a strain be resistant to several types of antibiotics. This review also analyzes the prevalence, major clinical implications, clinical causes of antibiotic resistance. Further, it evaluates the global burden of antimicrobial resistance, identifies various challenges and strategies in addressing the issue. Finally, put forward certain recommendations to prevent the spread and reduce the rate of resistance growth. | 2020 | 32201008 |
| 9542 | 15 | 0.9993 | Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria. | 2013 | 23939429 |
| 9416 | 16 | 0.9993 | Mechanisms of bacterial resistance and response to bile. Enteric bacteria are resistant to the bactericidal effects of intestinal bile, but these resistance mechanisms are not completely understood. It is becoming increasingly apparent that enteric bacteria have evolved to utilize bile as a signal for the temporal production of virulence factors and other adaptive mechanisms. A greater understanding of the resistance and response of bacteria to bile may assist the development of novel therapeutic, prevention, and diagnostic strategies to treat enteric and extraintestinal infections. | 2000 | 10962274 |
| 4223 | 17 | 0.9993 | Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity. | 2022 | 36144306 |
| 9440 | 18 | 0.9993 | The Case against Antibiotics and for Anti-Virulence Therapeutics. Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes. | 2021 | 34683370 |
| 9437 | 19 | 0.9993 | Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine. | 2014 | 24595606 |