Cancer departments as a source of resistant bacteria and fungi? - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
375401.0000Cancer departments as a source of resistant bacteria and fungi? Antimicrobial resistance increases worldwide. Among many factors, such as clonal spread of genes of resistance among and intra species, local epidemiology, nosocomial transmission, also consumption of antimicrobials may be responsible. Cancer departments, mainly in centers treating hematologic malignancies and organizing bone marrow transplantation (BMT) are known to have extensive consumption of either prophylactically or therapeutically administered antibiotics and antifungals. It is worthy to remember, that first strains of quinolone resistant E. coli, vancomycin resistant enterococci and staphylococci and fluconazol-resistant Candida albicans appeared in the patients treated for cancer with antineoplastic chemotherapy, resulting in profound granulocytopenia. Therefore, assessment of risks of antibiotic prophylaxis with quinolones and azoles and extensive use of empiric therapy with glycopeptides and polyenes needs to be considered. Intensive prophylactic strategies should be limited to group of high risk, leukemic patients or BMT recipients.199910355526
431210.9994Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella.200616716631
394620.9993Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world.201728587316
479730.9993Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination.19989777517
411640.9993Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. The use of antibiotics in food animals selects for bacteria resistant to antibiotics used in humans, and these might spread via the food to humans and cause human infection, hence the banning of growth-promoters. The actual danger seems small, and there might be disadvantages to human and to animal health. The low dosages used for growth promotion are an unquantified hazard. Although some antibiotics are used both in animals and humans, most of the resistance problem in humans has arisen from human use. Resistance can be selected in food animals, and resistant bacteria can contaminate animal-derived food, but adequate cooking destroys them. How often they colonize the human gut, and transfer resistance genes is not known. In zoonotic salmonellosis, resistance may arise in animals or humans, but human cross-infection is common. The case of campylobacter infection is less clear. The normal human faecal flora can contain resistant enterococci, but indistinguishable strains in animals and man are uncommon, possibly because most animal enterococci do not establish themselves in the human intestine. There is no correlation between the carriage of resistant enterococci of possible animal origin and human infection with resistant strains. Commensal Escherichia coli also exhibits host-animal preferences. Anti-Gram-positive growth promoters would be expected to have little effect on most Gram-negative organisms. Even if resistant pathogens do reach man, the clinical consequences of resistance may be small. The application of the 'precautionary principle' is a non-scientific approach that assumes that risk assessments will be carried out.200414657094
421750.9993Antimicrobial use and resistance in animals. Food animals in the United States are often exposed to antimicrobials to treat and prevent infectious disease or to promote growth. Many of these antimicrobials are identical to or closely resemble drugs used in humans. Precise figures for the quantity of antimicrobials used in animals are not publicly available in the United States, and estimates vary widely. Antimicrobial resistance has emerged in zoonotic enteropathogens (e.g., Salmonella spp., Campylobacter spp.), commensal bacteria (e.g., Escherichia coli, enterococci), and bacterial pathogens of animals (e.g., Pasteurella, Actinobacillus spp.), but the prevalence of resistance varies. Antimicrobial resistance emerges from the use of antimicrobials in animals and the subsequent transfer of resistance genes and bacteria among animals and animal products and the environment. To slow the development of resistance, some countries have restricted antimicrobial use in feed, and some groups advocate similar measures in the United States. Alternatives to growth-promoting and prophylactic uses of antimicrobials in agriculture include improved management practices, wider use of vaccines, and introduction of probiotics. Monitoring programs, prudent use guidelines, and educational campaigns provide approaches to minimize the further development of antimicrobial resistance.200211988879
431860.9993Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance.199610879217
412070.9993Transfer of antibiotic resistant bacteria from animals to man. Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and entero-haemorrhagic E. coli (EHEC). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella and campylobacter, gives cause for concern. The principles of controlling resistance development involve infection control at herd level and prudent use of antibiotics.199910783717
431780.9993Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade.200111524705
433590.9993Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different European countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly and in general decreases in resistance have followed. Guidelines for prudent use of antimicrobial agents may help to slow down the selection for resistance and should be based on knowledge regarding the normal susceptibility patterns of the causative agents and take into account the potential problems for human health. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection of resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine.200515755309
4315100.9993Problems and dilemmas of antimicrobial resistance. An important obstacle to the long-term efficacy of an antimicrobial agent is the appearance and spread of resistance to the agent. The fact that many antimicrobials are produced by microorganisms in nature may provide long-term selective pressure for the emergence of resistance in antibiotic-producing as well as -nonproducing organisms. Indeed, the rapidity with which many resistances have appeared after the introduction of a new antibiotic suggests that these resistance genes were already present somewhere in nature prior to clinical use. In the hospital setting, the most recent worrisome resistance traits to emerge include plasmid-mediated resistance to imipenem and to third-generation cephalosporins among nosocomial gram-negative bacteria, and the acquisition of resistance to vancomycin by enterococci. Methicillin-resistant staphylococci continue to be a problem and are increasingly resistant to numerous other agents such as rifampin and the newer fluoroquinolones. The most important resistances seen in community-acquired organisms include beta-lactam resistance in pneumococci and combined ampicillin and chloramphenicol resistance in Haemophilus influenzae. Shigellae resistant to essentially all commonly used oral agents are also a problem, particularly in developing countries. No end is in sight to the problem of antimicrobial resistance, and thus new strategies to prevent infections and control resistant organisms continue to be necessary.19921480504
4257110.9993Antibiotic resistance in bacteria. Antibiotic resistance in bacteria has emerged as a medical catastrophe. This results from the speed at which bacteria multiply and are spread, and the ease with which they can change their genetic material or acquire new genes. They exert biochemical resistance by preventing entry of the drug, by rapidly extruding the drug, or by enzymatically inactivating the drug or altering its molecular target. The presence of antibiotics in the internal environments of human beings and animals provides a selective pressure for any resistant organisms to become predominant. Examples of antibiotic resistance in several important human pathogens are Streptococcus pneumoniae, enterococci, staphylococci, enteric bacilli, Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria meningitidis, and Mycobacterium tuberculosis.19957631202
4334120.9993Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance.199910493603
4792130.9993Antibiotic resistance in the staphylococci. There has been much interest in the media, international as well as national, on the potential for the development of "superbugs' by which is usually meant pathogenic bacteria resistant to all available antibiotics. Two of the genera most often thought to fall into this category are the staphylococci (MRSA or Methicillin Resistant Staphylococcus aureus) and the enterococci (VRE or Vancomycin Resistant Enterococci) and although this article concentrates on the staphylococci the two share much in the way of transmissible genes.19979161125
4794140.9993Resistance to antibiotics used in dermatological practice. The increased prevalence of bacterial resistance is one of the major problems of medicine today. Antibiotic resistance can be defined as the situation where the minimal inhibitory concentration is greater than the concentration obtainable in vivo. Resistance genes are easily transferred among bacteria, especially bacteria on skin and mucous membranes. In dermatological patients the most important resistance problems are found among staphylococci, Propionibacterium acnes and, to some extent, streptococci. Staphylococcus aureus strains have developed worldwide resistance to penicillin due to betalactamase production in > 90% of cases, and methicillin resistance is now a major problem with resistance levels of > 50% in certain areas of the world. These resistant strains are often multiresistant, and include resistance to erythromycin and tetracycline, with resistance to quinolone developing rapidly. Group A streptococci are still susceptible to penicillin, but increasing problems with erythromycin and tetracycline have been reported. After treatment with both systemic and oral antibiotics, P. acnes develops resistance in more than 50% of cases, and it is estimated that one in four acne patients harbours strains resistant to tetracycline, erythromycin, and clindamycin. To limit the development of antibiotic resistance, it is necessary to establish an antibiotic policy (prescription rules, reimbursement strategy, development of both national and local guidelines, and limitations on non-medical use). Clinicians also need access to rapid diagnostic methods, including resistance testing. This may provide further data for surveillance systems, reporting both antibiotic consumption and resistance levels. The involvement of clinical doctors in teaching and research in this area is probably the most important aspect, along with their involvement in the formulation of national and local guidelines. In the future we may consider it more important to ensure that future patients can be offered antibiotic treatment, rather than focusing on the patient presenting today.19989990406
4216150.9993Antimicrobial Resistance in the Food Chain in the European Union. Consumers require safety foods but without losing enough supply and low prices. Food concerns about antimicrobial residues and antimicrobial-resistant (AMR) bacteria are not usually appropriately separated and could be perceived as the same problem. The monitoring of residues of antimicrobials in animal food is well established at different levels (farm, slaughterhouse, and industry), and it is preceded by the legislation of veterinary medicines where maximum residues limits are required for medicines to be used in food animal. Following the strategy of the World Health Organization, one of the proposed measures consists in controlling the use of critical antibiotics. The European Union surveillance program currently includes the animal species with the highest meat production (pigs, chickens, turkeys, and cattle) and the food derived from them, investigating antimicrobial resistance of zoonotic (Salmonella and Campylobacter) and indicator (Escherichia coli and enterococci) bacteria. AMR mechanisms encoded by genes have a greater impact on transfer than mutations. Sometimes these genes are found in mobile genetic elements such as plasmids, transposons, or integrons, capable of passing from one bacterium to another by horizontal transfer. It is important to know that depending on how the resistance mechanism is transferred, the power of dissemination is different. By vertical transfer of the resistance gene, whatever its origin, will be transmitted to the following generations. In the case of horizontal transfer, the resistance gene moves to neighboring bacteria and therefore the range of resistance can be much greater.201830077219
4119160.9993How to modify conditions limiting resistance in bacteria in animals and other reservoirs. Antimicrobial agents in veterinary medicine are used for three purposes: therapy, prophylaxis, and nutrition. The major public health risk is that selection pressure leads to an increase in the pool of resistance genes. Since 1987, the nutritional use of antimicrobials in Europe has been regulated by a council directive, which demands special investigations into the potential of antimicrobials to increase rates of drug resistance. However, the prophylactic and therapeutic use of antimicrobials has sometimes led to the emergence of resistant bacteria. For example, the selective effect of the prophylactic use of gentamicin and the therapeutic use of quinolones led to the emergence of resistant salmonellae. To prevent the spread of resistant microorganisms from animals to humans, it should be recognized that antibiotics are not suitable as a compensation for poor hygiene standards or for the eradication of a pathogen from a certain environment. They should be used only by doctors or veterinarians.19978994793
4793170.9993Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.202033402829
4796180.9993The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae.19989684651
3756190.9993Ecological antibiotic policy. Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. Salmonella spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable.200011051626