# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3750 | 0 | 1.0000 | Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes. | 2024 | 38466110 |
| 4310 | 1 | 0.9997 | Pathogenicity and drug resistance of animal streptococci responsible for human infections. Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized. | 2021 | 33750514 |
| 4753 | 2 | 0.9997 | Vancomycin-resistant enterococci. Enterococci, a part of normal gut flora, are not particularly pathogenic organisms in humans. For example, they do not cause respiratory tract infections. The most frequent enterococcal infections are urinary tract infections. Despite their lack of pathogenicity, enterococci have emerged as significant nosocomial pathogens in the United States and elsewhere. Enterococci are formidable pathogens because of their resistance to antimicrobial agents. Enterococci are intrinsically resistant to beta-lactam agents and aminoglycosides and were the first bacteria to acquire vancomycin resistance. Infection control measures have been far from effective at preventing the dissemination of vancomycin-resistant enterococci in the hospital. Therapy for infections due to vancomycin-resistant enterococci presents real challenges. Most isolates remain susceptible to nitrofurantoin, but this agent is useful only for urinary tract infections. The greatest threat posed by vancomycin-resistant enterococci is the potential to transfer their resistance genes to more pathogenic gram-positive bacteria, which could produce truly frightening pathogens. | 1998 | 9597252 |
| 4793 | 3 | 0.9997 | Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism. | 2020 | 33402829 |
| 4792 | 4 | 0.9997 | Antibiotic resistance in the staphylococci. There has been much interest in the media, international as well as national, on the potential for the development of "superbugs' by which is usually meant pathogenic bacteria resistant to all available antibiotics. Two of the genera most often thought to fall into this category are the staphylococci (MRSA or Methicillin Resistant Staphylococcus aureus) and the enterococci (VRE or Vancomycin Resistant Enterococci) and although this article concentrates on the staphylococci the two share much in the way of transmissible genes. | 1997 | 9161125 |
| 3945 | 5 | 0.9997 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |
| 3946 | 6 | 0.9997 | Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. | 2017 | 28587316 |
| 3947 | 7 | 0.9997 | Human health hazard from antimicrobial-resistant enterococci in animals and food. The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans. The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant animal enterococci should be disregarded as a human health hazard. On the basis of review of the literature, we find that neither the results provided by molecular typing that classify enterococci as host-specific organisms nor the occurrence of specific nosocomial clones of enterococci provide reasons to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association. | 2006 | 16941376 |
| 4796 | 8 | 0.9997 | The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae. | 1998 | 9684651 |
| 4752 | 9 | 0.9996 | Antibiotic resistance in gram-positive bacteria: epidemiological aspects. The emergence and spread of antibiotic resistance in gram-positive bacterial pathogens has become an increasing problem. There has been a dramatic increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. This is mainly due to the clonal dissemination of certain epidemic multiply-resistant strains, for example, those of MRSA and S. pneumoniae, as well as to the spread of resistance genes as exemplified by those causing glycopeptide resistance in enterococci. | 1999 | 10511391 |
| 4797 | 10 | 0.9996 | Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination. | 1998 | 9777517 |
| 4795 | 11 | 0.9996 | Epidemiology and mechanisms of glycopeptide resistance in enterococci. PURPOSE OF REVIEW: This review updates epidemiologic trends and our understanding of glycopeptide resistance in enterococci. RECENT FINDINGS: Colonization and infection rates with vancomycin resistant enterococci continue to increase throughout the world while factors contributing to this rise continue to be defined. While no interventions exist to eradicate colonization, infection control procedures are cost effective and decrease the prevalence of vancomycin resistant enterococcal colonization and infection. New molecular methods show great promise in strengthening our ability to detect colonization with these bacteria. Furthermore, our understanding of the origin of vancomycin resistant enterococci continues to grow. Paenibacillus species found in soil have been found to carry homologues of vanA-associated glycopeptide resistance genes found in enterococci. Also, additional evidence supports previous data that VanB-associated resistance may have been horizontally transferred from gastrointestinal tract bacteria to enterococci. Finally, glycopeptide resistance has been transferred to methicillin-resistant Staphylococcus aureus in clinical practice on several occasions. SUMMARY: The prevalence of vancomycin resistant enterococci will likely continue to increase. Implementation of infection control strategies, in conjunction with deployment of advanced technologies for detection of vancomycin resistant enterococci, may curb this rise. The emergence of vancomycin resistant S. aureus is of concern. | 2005 | 16258324 |
| 4754 | 12 | 0.9996 | Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria. | 2007 | 17659211 |
| 4312 | 13 | 0.9996 | Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella. | 2006 | 16716631 |
| 4596 | 14 | 0.9996 | Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. OBJECTIVES: This review summarizes the literature on the role of virulence and antimicrobial resistance genes of Staphylococcus aureus in bovine mastitis, focusing on the association between these characteristics and their implications for public and animal health. CONCLUSIONS: There is the possibility of antimicrobial resistance gene exchange among different bacteria, which is of serious concern in livestock husbandry, as well as in the treatment of human staphylococcal infections. | 2020 | 32603906 |
| 6628 | 15 | 0.9996 | Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface. | 2019 | 31599545 |
| 4205 | 16 | 0.9996 | Public health risk of antimicrobial resistance transfer from companion animals. Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health. | 2017 | 27999066 |
| 4179 | 17 | 0.9996 | Epidemiology of Antimicrobial Resistance Genes in Streptococcus agalactiae Sequences from a Public Database in a One Health Perspective. Streptococcus agalactiae is a well-known pathogen in humans and food-producing animals. Therefore, this bacterium is a paradigmatic example of a pathogen to be controlled by a One Health approach. Indeed, the zoonotic and reverse-zoonotic potential of the bacteria, the prevalence of Group B Streptococci (GBS) diseases in both human and animal domains, and the threatening global situation on GBS antibiotic resistance make these bacteria an important target for control programs. An epidemiological analysis using a public database containing sequences of S. agalactiae from all over the world was conducted to evaluate the frequency and evolution of antibiotic resistance genes in those isolates. The database we considered (NCBI pathogen detection isolate browser-NPDIB) is maintained on a voluntary basis. Therefore, it does not follow strict epidemiological criteria. However, it may be considered representative of the bacterial population related to human diseases. The results showed that the number of reported sequences increased largely in the last four years, and about 50% are of European origin. The frequency data and the cluster analysis showed that the AMR genes increased in frequency in recent years and suggest the importance of verifying the application of prudent protocols for antimicrobials in areas with an increasing frequency of GBS infections both in human and veterinary medicine. | 2022 | 36140016 |
| 4336 | 18 | 0.9996 | Antibiotic Resistance in Bacteria-A Review. A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as "foodborne pathoges" isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria. | 2022 | 36009947 |
| 4798 | 19 | 0.9996 | Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA. | 2008 | 18811239 |