# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3741 | 0 | 1.0000 | The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. Penicillin resistance in pneumococci is mediated by modified penicillin-binding proteins (PBPs) that have decreased affinity to beta-lactams. In high-level penicillin-resistant transformants of the laboratory strain Streptococcus pneumoniae R6 containing various combinations of low-affinity PBPs, disruption of the fib locus results in a collapse of PBP-mediated resistance. In addition, crosslinked muropeptides are highly reduced. The fib operon consists of two genes, fibA and fibB, homologous to Staphylococcus aureus femA/B which are also required for expression of methicillin resistance in this organism. FibA and FibB belong to a family of proteins of Gram-positive bacteria involved in the formation of interpeptide bridges, thus representing interesting new targets for antimicrobial compounds for this group of pathogens. | 2000 | 10867238 |
| 207 | 1 | 0.9990 | Synthesis of an amphiphilic vancomycin aglycone derivative inspired by polymyxins: overcoming glycopeptide resistance in Gram-positive and Gram-negative bacteria in synergy with teicoplanin in vitro. Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria. | 2022 | 36463278 |
| 277 | 2 | 0.9990 | Penicillin-binding proteins in Actinobacteria. Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria. | 2015 | 25351947 |
| 4504 | 3 | 0.9989 | Resistance of enterococci to aminoglycosides and glycopeptides. High-level resistance to aminoglycosides in enterococci often is mediated by aminoglycoside-modifying enzymes, and the corresponding genes generally are located on self-transferable plasmids. These enzymes are similar to those in staphylococci but differ from the modifying enzymes of gram-negative bacteria. Three classes of enzymes are distinguished, depending upon the reaction catalyzed. All but amikacin and netilmicin confer high-level resistance to the antibiotics that are modified in vitro. However, the synergistic activity of these last two antibiotics in combination with beta-lactam agents can be suppressed, as has always been found in relation to high-level resistance to the aminoglycosides. Acquisition of glycopeptide resistance by enterococci recently was reported. Strains of two phenotypes have been distinguished: those that are resistant to high levels of vancomycin and teicoplanin and those that are inducibly resistant to low levels of vancomycin and susceptible to teicoplanin. In strains of Enterococcus faecium highly resistant to glycopeptides, we have characterized plasmids ranging from 34 to 40 kilobases that are often self-transferable to other gram-positive organisms. The resistance gene vanA has been cloned, and its nucleotide sequence has been determined. Hybridization experiments showed that this resistance determinant is present in all of our enterococcal strains that are highly resistant to glycopeptides. The vanA gene is part of a cluster of plasmid genes responsible for synthesis of peptidoglycan precursors containing a depsipeptide instead of the usual D-alanyl-D-alanine terminus. Reduced affinity of glycopeptides to these precursors confers resistance to the antibiotics. | 1992 | 1520800 |
| 274 | 4 | 0.9989 | Genes for a beta-lactamase, a penicillin-binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. Three genes encoding a typical beta-lactamase, a penicillin-binding protein (PBP4) and a transmembrane protein are located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. The similarity of the N. lactamdurans beta-lactamase to class A beta-lactamases from clinical isolates supports the hypothesis that antibiotic resistance genes in pathogenic bacteria are derived from antibiotic-producing organisms. The beta-lactamase is secreted and is active against penicillins (including the biosynthetic intermediates penicillin N and isopenicillin N), but not against cephamycin C. The beta-lactamase is synthesized during the active growth phase, prior to the formation of three cephamycin biosynthetic enzymes. The PBP of N. lactamdurans is a low-M(r) protein that is very similar to DD-carboxypeptidases of Streptomyces and Actinomadura. The pbp gene product expressed in Streptomyces lividans accumulates in the membrane fraction. By disruption of N. lactamdurans protoplasts, the PBP4 was shown to be located in the plasma membrane. Eight PBPs were found in the membranes of N. lactamdurans, none of which bind cephamycin C, which explains the resistance of this strain to its own antibiotic. A transmembrane protein encoded by the cmcT gene of the cluster also accumulates in the membrane fraction and is probably related to the control of synthesis and secretion of the antibiotic. A balanced synthesis of beta-lactam antibiotics, beta-lactamase and PBP is postulated to be critical for the survival of beta-lactam-producing actinomycetes. | 1993 | 8440253 |
| 3744 | 5 | 0.9989 | Vancomycin resistance VanS/VanR two-component systems. Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster. | 2008 | 18792691 |
| 4435 | 6 | 0.9989 | Bacterial resistance to the cyclic glycopeptides. Cyclic-glycopeptide antibiotics, such as vancomycin and teicoplanin, have been almost uniformly active against pathogenic Gram-positive bacteria since their discovery in the 1950s. Resistance is now emerging among enterococci and staphylococci by acquisition of novel genes or by mutation, respectively. The mechanism of resistance for enterococci appears to be synthesis of an altered cell-wall precursor with lower affinity for the antibiotics. | 1994 | 7850206 |
| 4439 | 7 | 0.9988 | beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. The beta-lactams are by far the most widely used and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved among most common pathogens. Streptococcus pneumoniae has become a paradigm for understanding the evolution of resistance mechanisms, the simplest of which, by far, is the production of beta-lactamases. As these enzymes are frequently plasmid encoded, resistance can readily be transmitted between bacteria. Despite the fact that pneumococci are naturally transformable organisms, no beta-lactamase-producing strain has yet been described. A much more complex resistance mechanism has evolved in S. pneumoniae that is mediated by a sophisticated restructuring of the targets of the beta-lactams, the penicillin-binding proteins (PBPs); however, this may not be the whole story. Recently, a third level of resistance mechanisms has been identified in laboratory mutants, wherein non-PBP genes are mutated and resistance development is accompanied by deficiency in genetic transformation. Two such non-PBP genes have been described: a putative glycosyltransferase, CpoA, and a histidine protein kinase, CiaH. We propose that these non-PBP genes are involved in the biosynthesis of cell wall components at a step prior to the biosynthetic functions of PBPs, and that the mutations selected during beta-lactam treatment counteract the effects caused by the inhibition of penicillin-binding proteins. | 1999 | 10447877 |
| 206 | 8 | 0.9988 | Review of preclinical studies with ofloxacin. Most Enterobacteriaceae, enteropathogens, and fastidious gram-negative bacteria are highly susceptible to ofloxacin, a new tricyclic fluoroquinolone. Aerobic gram-negative bacilli and gram-positive bacteria are generally not as susceptible to ofloxacin. Obligate anaerobes are generally resistant to ofloxacin, while many mycobacteria, chlamydiae, legionellae, and mycoplasmas are susceptible. Ofloxacin is generally less active than ciprofloxacin against gram-negative bacteria, is similarly active against gram-positive bacteria, mycobacteria, legionellae, and mycoplasmas, and is more active against chlamydiae. However, numerous animal studies have shown these two fluoroquinolones to be similar. Ofloxacin inhibits DNA synthesis, is rapidly bactericidal, and is 1,000-2,400 times more potent against prokaryotic gyrase than against eukaryotic gyrase. The bactericidal effect of ofloxacin is not completely neutralized by inhibitors of protein or RNA synthesis. Resistance to ofloxacin arises from mutations within chromosomal genes involved with DNA gyrase and drug permeation. Selection of resistant mutants by ofloxacin is not as frequent as that seen with nalidixic acid. However, due to the cross-resistance between ofloxacin and other fluoroquinolones, all of these drugs should be used judiciously to preserve their clinical utility. | 1992 | 1554842 |
| 209 | 9 | 0.9988 | Targeting quinolone- and aminocoumarin-resistant bacteria with new gyramide analogs that inhibit DNA gyrase. Bacterial DNA gyrase is an essential type II topoisomerase that enables cells to overcome topological barriers encountered during replication, transcription, recombination, and repair. This enzyme is ubiquitous in bacteria and represents an important clinical target for antibacterial therapy. In this paper we report the characterization of three exciting new gyramide analogs-from a library of 183 derivatives-that are potent inhibitors of DNA gyrase and are active against clinical strains of gram-negative bacteria (Escherichia coli, Shigella flexneri, and Salmonella enterica; 3 of 10 wild-type strains tested) and gram-positive bacteria (Bacillus spp., Enterococcus spp., Staphylococcus spp., and Streptococcus spp.; all 9 of the wild-type strains tested). E. coli strains resistant to the DNA gyrase inhibitors ciprofloxacin and novobiocin display very little cross-resistance to these new gyramides. In vitro studies demonstrate that the new analogs are potent inhibitors of the DNA supercoiling activity of DNA gyrase (IC(50)s of 47-170 nM) but do not alter the enzyme's ATPase activity. Although mutations that confer bacterial cells resistant to these new gyramides map to the genes encoding the subunits of the DNA gyrase (gyrA and gyrB genes), overexpression of GyrA, GyrB, or GyrA and GyrB together does not suppress the inhibitory effect of the gyramides. These observations support the hypothesis that the gyramides inhibit DNA gyrase using a mechanism that is unique from other known inhibitors. | 2017 | 30034678 |
| 276 | 10 | 0.9988 | Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics. Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics. | 2016 | 27171072 |
| 6245 | 11 | 0.9988 | Mutations in penicillin-binding protein (PBP) genes and in non-PBP genes during selection of penicillin-resistant Streptococcus gordonii. Penicillin resistance in Streptococcus spp. involves multiple mutations in both penicillin-binding proteins (PBPs) and non-PBP genes. Here, we studied the development of penicillin resistance in the oral commensal Streptococcus gordonii. Cyclic exposure of bacteria to twofold-increasing penicillin concentrations selected for a progressive 250- to 500-fold MIC increase (from 0.008 to between 2 and 4 microg/ml). The major MIC increase (> or = 35-fold) was related to non-PBP mutations, whereas PBP mutations accounted only for a 4- to 8-fold additional increase. PBP mutations occurred in class B PBPs 2X and 2B, which carry a transpeptidase domain, but not in class A PBP 1A, 1B, or 2A, which carry an additional transglycosylase domain. Therefore, we tested whether inactivation of class A PBPs affected resistance development in spite of the absence of mutations. Deletion of PBP 1A or 2A profoundly slowed down resistance development but only moderately affected resistance in already highly resistant mutants (MIC = 2 to 4 microg/ml). Thus, class A PBPs might facilitate early development of resistance by stabilizing penicillin-altered peptidoglycan via transglycosylation, whereas they might be less indispensable in highly resistant mutants which have reestablished a penicillin-insensitive cell wall-building machinery. The contribution of PBP and non-PBP mutations alone could be individualized in DNA transformation. Both PBP and non-PBP mutations conferred some level of intrinsic resistance, but combining the mutations synergized them to ensure high-level resistance (> or = 2 microg/ml). The results underline the complexity of penicillin resistance development and suggest that inhibition of transglycosylase might be an as yet underestimated way to interfere with early resistance development. | 2006 | 17000741 |
| 8213 | 12 | 0.9987 | The Extracellular Domain of Two-component System Sensor Kinase VanS from Streptomyces coelicolor Binds Vancomycin at a Newly Identified Binding Site. The glycopeptide antibiotic vancomycin has been widely used to treat infections of Gram-positive bacteria including Clostridium difficile and methicillin-resistant Staphylococcus aureus. However, since its introduction, high level vancomycin resistance has emerged. The genes responsible require the action of the two-component regulatory system VanSR to induce expression of resistance genes. The mechanism of detection of vancomycin by this two-component system has yet to be elucidated. Diverging evidence in the literature supports activation models in which the VanS protein binds either vancomycin, or Lipid II, to induce resistance. Here we investigated the interaction between vancomycin and VanS from Streptomyces coelicolor (VanS(SC)), a model Actinomycete. We demonstrate a direct interaction between vancomycin and purified VanS(SC), and traced these interactions to the extracellular region of the protein, which we reveal adopts a predominantly α-helical conformation. The VanS(SC)-binding epitope within vancomycin was mapped to the N-terminus of the peptide chain, distinct from the binding site for Lipid II. In targeting a separate site on vancomycin, the effective VanS ligand concentration includes both free and lipid-bound molecules, facilitating VanS activation. This is the first molecular description of the VanS binding site within vancomycin, and could direct engineering of future therapeutics. | 2020 | 32235931 |
| 6325 | 13 | 0.9987 | Repressed multidrug resistance genes in Streptomyces lividans. Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes. | 2003 | 12937892 |
| 4436 | 14 | 0.9987 | Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance. | 1996 | 8807824 |
| 458 | 15 | 0.9987 | Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Linezolid is a member of a novel class of antibiotics, with resistance already being reported. We used whole-genome sequencing on three independent Streptococcus pneumoniae strains made resistant to linezolid in vitro in a step-by-step fashion. Analysis of the genome assemblies revealed mutations in the 23S rRNA gene in all mutants including, notably, G2576T, a previously recognized resistance mutation. Mutations in an additional 31 genes were also found in at least one of the three sequenced genomes. We concentrated on three new mutations that were found in at least two independent mutants. All three mutations were experimentally confirmed to be involved in antibiotic resistance. Mutations upstream of the ABC transporter genes spr1021 and spr1887 were correlated with increased expression of these genes and neighboring genes of the same operon. Gene inactivation supported a role for these ABC transporters in resistance to linezolid and other antibiotics. The hypothetical protein spr0333 contains an RNA methyltransferase domain, and mutations within that domain were found in all S. pneumoniae linezolid-resistant strains. Primer extension experiments indicated that spr0333 methylates G2445 of the 23S rRNA and mutations in spr0333 abolished this methylation. Reintroduction of a nonmutated version of spr0333 in resistant bacteria reestablished G2445 methylation and led to cells being more sensitive to linezolid and other antibiotics. Interestingly, the spr0333 ortholog was also mutated in a linezolid-resistant clinical Staphylococcus aureus isolate. Whole-genome sequencing and comparative analyses of S. pneumoniae resistant isolates was useful for discovering novel resistance mutations. | 2009 | 19351617 |
| 4790 | 16 | 0.9987 | Combating vancomycin resistance in bacteria: targeting the D-ala-D-ala dipeptidase VanX. In the past 20 years, vancomycin and other glycopeptide antibiotics have been administered to patients with Streptococcal and Staphylococcal infections that were resistant to all other antibiotics or to patients who were allergic to penicillins and cephalosporins. After extensive use of vancomycin and other glycopeptide antibiotics in humans, several strains of Enterococcus have developed high-level vancomycin resistance (collectively called VRE, vancomycin-resistant Enterococcus), and this resistance phenotype has spread to other organisms. The spread of vancomycin resistance to other pathogens and, potentially, to bacterial strains on the CDC's bioterrorism watch list is a major biomedical concern. Bacteria most often become resistant to vancomycin by acquiring a transposon containing genes that encode for a number of proteins, five of which are essential for the high-level resistance phenotype. The five essential gene products are called VanR, VanS, VanH, VanA, and VanX. Previous studies have shown that the inactivation of VanX results in an organism that is sensitive to vancomycin and that VanX is an excellent inhibitor target. In this review the known inhibitors and structural and mechanistic properties of VanX will be discussed. These data will be used to offer suggestions for novel, rationally-designed or -redesigned inhibitors, which could potentially be used in combination with existing glycopeptide antibiotics as a treatment for vancomycin-resistant bacterial infections. | 2006 | 16789876 |
| 4437 | 17 | 0.9987 | The activity of glycopeptide antibiotics against resistant bacteria correlates with their ability to induce the resistance system. Glycopeptide antibiotics containing a hydrophobic substituent display the best activity against vancomycin-resistant enterococci, and they have been assumed to be poor inducers of the resistance system. Using a panel of 26 glycopeptide derivatives and the model resistance system in Streptomyces coelicolor, we confirmed this hypothesis at the level of transcription. Identification of the structural glycopeptide features associated with inducing the expression of resistance genes has important implications in the search for more effective antibiotic structures. | 2014 | 25092694 |
| 208 | 18 | 0.9987 | Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature. By screening cultures of soil bacteria, we re-discovered an old antibiotic (nybomycin) as an antibiotic with a novel feature. Nybomycin is active against quinolone-resistant Staphylococcus aureus strains with mutated gyrA genes but not against those with intact gyrA genes against which quinolone antibiotics are effective. Nybomycin-resistant mutant strains were generated from a quinolone-resistant, nybomycin-susceptible, vancomycin-intermediate S. aureus (VISA) strain Mu 50. The mutants, occurring at an extremely low rate (<1 × 10(-11)/generation), were found to have their gyrA genes back-mutated and to have lost quinolone resistance. Here we describe nybomycin as the first member of a novel class of antibiotics designated 'reverse antibiotics'. | 2012 | 22534508 |
| 3743 | 19 | 0.9987 | Expression of glycopeptide-resistance gene in response to vancomycin and teicoplanin in the cardiac vegetations of rabbits infected with VanB-type Enterococcus faecalis. VanB-type resistance in enterococci corresponds to resistance to vancomycin but not to resistance to the related glycopeptide teicoplanin, because the vanB gene cluster is activated by the VanR(B)-VanS(B) 2-component regulatory system in response to vancomycin but not to teicoplanin. Mutations in the vanS(B) gene allow for constitutive or teicoplanin-inducible expression of the resistance genes. To analyze in vivo expression of the van genes in rabbits with experimental endocarditis, a VanB-type Enterococcus faecalis with a transcriptional fusion between the P(YB) promoter of resistance genes and the gfpmut1 gene for the green-fluorescent protein in the chromosome was constructed. Rounded heaps containing fluorescent bacteria were detected in vegetation slides from rabbits treated with vancomycin but not in those from control rabbits, revealing induction of a tightly regulated vanB gene cluster. Teicoplanin-resistant mutants were detected as fluorescent bacteria in rabbits treated with teicoplanin. Thus, the reporter system monitored expression of a glycopeptide-resistance gene in vivo at a single-cell level. | 2004 | 14702158 |