# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3739 | 0 | 1.0000 | Survey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial species. Tuberculosis treatment includes broad-spectrum antibiotics such as rifampicin, streptomycin and fluoroquinolones, which are also used against other pathogenic bacteria. We developed Drug Resistance Associated Genes database (DRAGdb), a manually curated repository of mutational data of drug resistance associated genes (DRAGs) across ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens, and other bacteria with a special focus on Mycobacterium tuberculosis (MTB). Analysis of mutations in drug-resistant genes listed in DRAGdb suggested both homoplasy and pleiotropy to be associated with resistance. Homoplasy was observed in six genes namely gidB, gyrA, gyrB, rpoB, rpsL and rrs. For these genes, drug resistance-associated mutations at codon level were conserved in MTB, ESKAPE and many other bacteria. Pleiotropy was exemplified by a single nucleotide mutation that was associated with resistance to amikacin, gentamycin, rifampicin and vancomycin in Staphylococcus aureus. DRAGdb data also revealed that mutations in some genes such as pncA, inhA, katG and embA,B,C were specific to Mycobacterium species. For inhA and pncA, the mutations in the promoter region along with those in coding regions were associated with resistance to isoniazid and pyrazinamide respectively. In summary, the DRAGdb database is a compilation of all the major MTB drug resistance genes across bacterial species, which allows identification of homoplasy and pleiotropy phenomena of DRAGs. | 2020 | 32488120 |
| 4798 | 1 | 0.9990 | Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA. | 2008 | 18811239 |
| 5983 | 2 | 0.9990 | Analysis of mutational patterns in quinolone resistance-determining regions of GyrA and ParC of clinical isolates. Fluoroquinolone (FQ)-resistant bacteria pose a major global health threat. Unanalysed genomic data from thousands of sequenced microbes likely contain important hints regarding the evolution of FQ resistance, yet this information lies fallow. Here we analysed the co-occurrence patterns of quinolone resistance mutations in genes encoding the FQ drug targets DNA gyrase (gyrase) and topoisomerase IV (topo-IV) from 36,402 bacterial genomes, representing 10 Gram-positive and 10 Gram-negative species. For 19 species, the likeliest routes toward resistance mutations in both targets were determined, and for 5 species those mutations necessary and sufficient to predict FQ resistance were also determined. Target mutation hierarchy was fixed in all examined Gram-negative species, with gyrase being the primary and topo-IV the secondary quinolone target, as well as in six of nine Gram-positive species, with topo-IV being the primary and gyrase the secondary target. By contrast, in three Gram-positive species (Staphylococcus haemolyticus, Streptococcus pneumoniae and Streptococcus suis), under some conditions gyrase became the primary and topo-IV the secondary target. The path through individual resistance mutations varied by species. Both linear and branched paths were identified in Gram-positive and Gram-negative organisms alike. Finally, FQ resistance could be predicted based solely on target gene quinolone resistance mutations for Acinetobacter baumannii, Escherichia coli and Staphylococcus aureus, but not Klebsiella pneumoniae or Pseudomonas aeruginosa. These findings have important implications both for sequence-based diagnostics and for understanding the emergence of FQ resistance. | 2019 | 30582984 |
| 4490 | 3 | 0.9990 | Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis. Rifampin is a major drug used to treat leprosy and tuberculosis. The rifampin resistance of Mycobacterium leprae and Mycobacterium tuberculosis results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. A method for the molecular determination of rifampin resistance in these two mycobacteria would be clinically valuable, but the relationship between the mutations and susceptibility to rifampin must be clarified before its use. Analyses of mutations responsible for rifampin resistance using clinical isolates present some limitations. Each clinical isolate has its own genetic variations in some loci other than rpoB, which might affect rifampin susceptibility. For this study, we constructed recombinant strains of Mycobacterium smegmatis carrying the M. leprae or M. tuberculosis rpoB gene with or without mutation and disrupted their own rpoB genes on the chromosome. The rifampin and rifabutin susceptibilities of the recombinant bacteria were measured to examine the influence of the mutations. The results confirmed that several mutations detected in clinical isolates of these two pathogenic mycobacteria can confer rifampin resistance, but they also suggested that some mutations detected in M. leprae isolates or rifampin-resistant M. tuberculosis isolates are not involved in rifampin resistance. | 2012 | 22252831 |
| 4752 | 4 | 0.9989 | Antibiotic resistance in gram-positive bacteria: epidemiological aspects. The emergence and spread of antibiotic resistance in gram-positive bacterial pathogens has become an increasing problem. There has been a dramatic increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. This is mainly due to the clonal dissemination of certain epidemic multiply-resistant strains, for example, those of MRSA and S. pneumoniae, as well as to the spread of resistance genes as exemplified by those causing glycopeptide resistance in enterococci. | 1999 | 10511391 |
| 6269 | 5 | 0.9989 | Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Mutations in rRNA genes (rrn) that confer resistance to ribosomal inhibitors are typically recessive or weakly codominant and have been mostly reported for clinical strains of pathogens possessing only one or two rrn operons, such as Helicobacter pylori and Mycobacterium spp. An analysis of the genome sequences of several members of the Chlamydiaceae revealed that these obligate intracellular bacteria harbor only one or two sets of rRNA genes. To study the contribution of rRNA mutations to the emergence of drug resistance in the Chlamydiaceae, we used the sensitivities of Chlamydia trachomatis L2 (two rrn operons) and Chlamydophila psittaci 6BC (one rrn operon) to the aminoglycoside spectinomycin as a model. Confluent cell monolayers were infected in a plaque assay with about 10(8) wild-type infectious particles and then treated with the antibiotic. After a 2-week incubation time, plaques formed by spontaneous spectinomycin-resistant (Spc(r)) mutants appeared with a frequency of 5 x 10(-5) for C. psittaci 6BC. No Spc(r) mutants were isolated for C. trachomatis L2, although the frequencies of rifampin resistance were in the same range for both strains (i.e., 10(-7)). The risk of emergence of Chlamydia strains resistant to tetracyclines and macrolides, the ribosomal drugs currently used to treat chlamydial infections, is discussed. | 2005 | 15980362 |
| 6258 | 6 | 0.9989 | Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. High-level quinolone resistance in Enterococcus faecium was associated with mutations in both gyrA and parC genes in 10 of 11 resistant strains. On low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis. | 1999 | 10103206 |
| 5810 | 7 | 0.9988 | Evolutionary conservation of motifs within vanA and vanB of vancomycin-resistant enterococci. BACKGROUND AND AIM: Global Health is threatened by the rapid emergence of multidrug-resistant bacteria. Antibiotic resistomes rapidly evolve, yet conserved motifs elucidated in our study have the potential for future drug targets for precision medicine. This study aimed to identify conserved genetic sequences and their evolutionary pathways among vancomycin-resistant Enterococcus species such as Enterococcus faecium and Enterococcus faecalis. MATERIALS AND METHODS: We retrieved a total of 26 complete amino acid and nucleotide sequences of resistance determinant genes against vancomycin (vanA and vanB), streptomycin (aac-aah), and penicillin (pbp5) from the publicly available genetic sequence database, GenBank. The sequences were comprised of bacteria classified under the genera of Enterococcus, Staphylococcus, Amycolatopsis, Ruminococcus, and Clostridium. Sequences were aligned with Clustal Omega Multiple Sequence Alignment program and Percent Identity Matrices were derived. Phylogenetic analyses to elucidate evolutionary relationships between sequences were conducted with the neighbor-end joining method through the Molecular Evolutionary Genetics Analysis (MEGAX) software, developed by the Institute of Molecular Evolutionary Genetics at Pennsylvania State University. Subsequent network analyses of the resistance gene, vanB, within E. faecium were derived from ScanProsite and InterPro. RESULTS: We observed the highest nucleotide sequence similarity of vanA regions within strains of E. faecium (100%) and E. faecalis (100%). Between Enterococcus genera, we continued to observe high sequence conservation for vanA and vanB, up to 99.9% similarity. Phylogenetic tree analyses suggest rapid acquisition of these determinants between strains within vanA and vanB, particularly between strains of Enterococcus genera, which may be indicative of horizontal gene transfer. Within E. faecium, Adenosine 5'-Triphosphate (ATP)-Grasp and D-ala-D-ala ligase (Ddl) were found as conserved domains of vanA and vanB. We additionally found that there is notable sequence conservation, up to 66.67%, between resistomes against vancomycin and streptomycin among E. faecium. CONCLUSION: Resistance genes against vancomycin have highly conserved sequences between strains of Enterococcus bacteria. These conserved sequences within vanA and vanB encode for ATP-Grasp and Ddl motifs, which have functional properties for maintaining cell wall integrity. High sequence conservation is also observed among resistance genes against penicillin and streptomycin, which can inform future drug targets for broader spectrum therapies. | 2022 | 36425127 |
| 6266 | 8 | 0.9988 | Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis. | 2012 | 23022568 |
| 6247 | 9 | 0.9988 | Molecular basis and evolutionary cost of a novel macrolides/lincosamides resistance phenotype in Staphylococcus haemolyticus. Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure. | 2023 | 37724875 |
| 4928 | 10 | 0.9988 | Whole genome sequencing data of Klebsiella aerogenes isolated from agricultural soil of Haryana, India. Klebsiella aerogenes, is a Gram-negative bacterium, which was previously known as Enterobacter aerogenes. It is present in all environments such as water, soil, air and hospitals; and is an opportunistic pathogen that causes several types of infections. As compared to other clinically important pathogens included in the ESKAPE category (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), the pangenome and population structure of Klebsiella aerogenes is still poorly understood. For the present study, the bacterial sample was isolated from agricultural soils of Haryana, India. With an aim to identify the occurrence of multi-drug resistance genes in the agricultural field soil bacterial isolate, whole genome sequencing (WGS) of the bacteria was performed; and the antibiotic resistance causing genes, along with the genes responsible for other major functions of the cell; and the different Single Nuceotide Polymorphisms (SNPs) and Insertions and deletions (InDels) were identified. The data presented in this manuscript can be reused by researchers as a reference for determining the antibiotic resistance genes that could be present in different bacterial isolates, and it would also help in determination of functions of various other genes present in other genomes of Klebsiella species. | 2021 | 34485641 |
| 6263 | 11 | 0.9988 | Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype. | 2021 | 33875431 |
| 4754 | 12 | 0.9988 | Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria. | 2007 | 17659211 |
| 4483 | 13 | 0.9988 | Ribosomal Resistance: Emerging Problems and Potential Solutions. Many systemic antibiotics use ribosomal inhibition to suppress the replication of bacteria. Current research suggests that resistance to macrolide, lincosamide, and streptogramin B (MLS(B)) antibiotics is emerging among clinical isolates of Streptococcus pyogenes and Streptococcus pneumoniae. Erythromycin methylases, encoded by erm genes, modify an essential adenine residue in 23S rRNA and confer cross-resistance to MLS(B) antibiotics. More recently, macrolide efflux (mef) genes were identified in isolates of S. pyogenes and S. pneumoniae that show resistance to 14- and 15-membered macrolides (M phenotype). Resistance to MLSB has been associated with the increased use of erythromycin, and the recent emergence of the M phenotype has coincided with the marketing of newer macrolides. However, despite increasing macrolide resistance among clinical isolates of S. pneumoniae, convincing data on treatment failures directly attributable to MLS(B) or M phenotypes are limited. Possible solutions to emerging MLS(B) and M phenotype resistance include the introduction of alternative antibiotics, the more prudent use of antibiotics, combination therapy, molecular diagnostics, enhanced understanding of pharmacodynamic variables, and redefined resistance breakpoints. | 1999 | 11095824 |
| 4388 | 14 | 0.9988 | Detection of Genes Related to Antibiotic Resistance in Leptospira. Leptospirosis is a disease caused by the bacteria of the Leptospira genus, which can usually be acquired by humans through contact with urine from infected animals; it is also possible for this urine to contaminate soils and bodies of water. The disease can have deadly consequences in some extreme cases. Fortunately, until now, patients with leptospirosis have responded adequately to treatment with doxycycline and azithromycin, and no cases of antibiotic resistance have been reported. However, with the extensive use of such medications, more bacteria, such as Staphylococci and Enterococci, are becoming resistant. The purpose of this study is to determine the presence of genes related to antibiotic resistance in the Leptospira genus using bioinformatic tools, which have not been undertaken in the past. Whole genomes from the 69 described Leptospira species were downloaded from NCBI's GeneBank and analyzed using CARD (The Comprehensive Antibiotic Resistant Database) and RAST (Rapid Annotations using Subsystem Technology). After a detailed genomic search, 12 genes associated with four mechanisms were found: resistance to beta-lactamases, vancomycin, aminoglycoside adenylyltransferases, as well as multiple drug efflux pumps. Some of these genes are highly polymorphic among different species, and some of them are present in multiple copies in the same species. In conclusion, this study provides evidence of the presence of genes related to antibiotic resistance in the genomes of some species of the genus Leptospira, and it is the starting point for future experimental evaluation to determine whether these genes are transcriptionally active in some species and serovars. | 2024 | 39330892 |
| 6250 | 15 | 0.9988 | High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species. | 2024 | 38175839 |
| 4487 | 16 | 0.9988 | Detecting mutations that confer oxazolidinone resistance in gram-positive bacteria. Resistance to oxazolidinone antibiotics, including linezolid, in Gram-positive bacteria is mediated by single-nucleotide polymorphisms (SNPs) in the 23S ribosomal RNA. A G2576U change (encoded by a G2576T mutation in the rRNA genes) is found in most resistant clinical isolates of enterococci and staphylococci; a variety of changes have been found in resistant mutants selected in vitro. Pyrosequencing can be used to detect SNPs known to confer oxazolidinone resistance, including the G2576T change. Most bacteria have more than one rRNA gene copy and Pyrosequencing can also be used for allele quantification, i.e., to estimate the proportions of mutant vs wild-type alleles. The number of mutated rRNA gene copies correlates roughly with the level of oxazolidinone resistance displayed by resistant isolates. This chapter summarizes the Pyrosequencing assays that have been developed in our laboratory for analyzing oxazolidinone-resistant enterococci and staphylococci. | 2007 | 17185761 |
| 4451 | 17 | 0.9987 | Comparative genomics of multidrug resistance in Acinetobacter baumannii. Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance. | 2006 | 16415984 |
| 3659 | 18 | 0.9987 | Resistance to vancomycin and teicoplanin: an emerging clinical problem. Vancomycin and teicoplanin are glycopeptides active against a wide range of gram-positive bacteria. For 30 years following the discovery of vancomycin in 1956, vancomycin resistance was not detected among normally susceptible bacteria recovered from human specimens. Since 1986, however, bacteria resistant to vancomycin or teicoplanin or both have been described. Strains of the genera Leuconostoc, Lactobacillus, Pediococcus, and Erysipelothrix seem inherently resistant to glycopeptides. Species and strains of enterococci and coagulase-negative staphylococci appear to have acquired or developed resistance. There are at least two categories of glycopeptide resistance among enterococci, characterized by either high-level resistance to vancomycin (MIC, greater than or equal to 64 mg/liter) and teicoplanin (MIC, greater than or equal to 8 mg/liter) or lower-level vancomycin resistance (MIC, 32 to 64 mg/liter) and teicoplanin susceptibility (MIC, less than or equal to 1 mg/liter). The two categories appear to have similar resistance mechanisms, although genetic and biochemical studies indicate that they have arisen independently. Among coagulase-negative staphylococci, strains for which vancomycin MICs are up to 20 mg/liter or teicoplanin MICs are 16 to 32 mg/liter have been reported, but cross-resistance between these glycopeptides varies. The selective advantage accorded to glycopeptide-resistant bacteria and the observation that high-level resistance in enterococci is transferable suggest that such resistance may be expected to increase in incidence. Clinicians and microbiologists need to be aware of this emerging problem. | 1990 | 2143434 |
| 4799 | 19 | 0.9987 | Glycopeptide-resistant enterococci: a decade of experience. Since their first description in 1988, glycopeptide-resistant enterococci (GRE) have emerged as a significant cause of nosocomial infections and colonisations, particularly in Europe and the USA. Two major genetically distinct forms of acquired resistance, designated VanA and VanB, are recognised, although intrinsic resistance occurs in some enterococcal species (VanC) and a third form of acquired resistance (VanD) has been reported recently. The biochemical basis of each resistance mechanism is similar; the resistant enterococci produce modified peptidoglycan precursors that show decreased binding affinity for glycopeptide antibiotics. Although VanA resistance is detected readily in the clinical laboratory, the variable levels of vancomycin resistance associated with the other phenotypes makes detection less reliable. Under-reporting of VanB resistance as a result of a lower detection rate may account, in part, for the difference in the numbers of enterococci displaying VanA and VanB resistance referred to the PHLS Laboratory of Hospital Infection. Since 1987, GRE have been referred from >1100 patients in almost 100 hospitals, but 88% of these isolates displayed the VanA phenotype. It is possible that, in addition to the problems of detection, there may be a real difference in the prevalence of VanA and VanB resistance reflecting different epidemiologies. Our present understanding of the genetic and biochemical basis of these acquired forms of glycopeptide resistance has been gained mainly in the last 5 years. However, these relatively new enterococcal resistances appear still to be evolving; there have now been reports of transferable VanB resistance associated with either large chromosomally borne transposons or plasmids, genetic linkage of glycopeptide resistance and genes conferring high-level resistance to aminoglycoside antibiotics, epidemic strains of glycopeptide-resistant Enterococcus faecium isolated from multiple patients in numerous hospitals, and of glycopeptide dependence (mutant enterococci that actually require these agents for growth). The gene clusters responsible for VanA and VanB resistance are located on transposable elements, and both transposition and plasmid transfer have resulted in the dissemination of these resistance genes into diverse strains of several species of enterococci. Despite extensive research, knowledge of the origins of these resistances remains poor. There is little homology between the resistance genes and DNA from either intrinsically resistant gram-positive genera or from the soil bacteria that produce glycopeptides, which argues against direct transfer to enterococci from these sources. However, recent data suggest a more distant, evolutionary relationship with genes found in glycopeptide-producing bacteria. In Europe, VanA resistance occurs in enterococci isolated in the community, from sewage, animal faeces and raw meat. This reservoir suggests that VanA may not have evolved in hospitals, and its existence has been attributed, controversially, to use of the glycopeptide avoparcin as a growth promoter, especially in pigs and poultry. However, as avoparcin has never been licensed for use in the USA and, to date, VanB resistance has not been confirmed in non-human enterococci, it is clear that the epidemiology of acquired glycopeptide resistance in enterococci is complex, with many factors contributing to its evolution and global dissemination. | 1998 | 9788808 |