In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
373801.0000In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria.201728749770
624210.9984Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes. When bacteria develop drug-resistant mutations, there is often an associated biological cost; however, some strains can exhibit low- or no-cost mutations. In the present study, a quantitative resazurin reduction assay was used to measure the biological cost of Mycobacterium tuberculosis isolates that contained different mutations in the rpsL, rrs, rpoB, and katG genes, and showed different resistance profiles. Biological costs were determined by comparing the growth curves of drug-resistant isolates with drug-susceptible strains. Some strains, such as those with rpoB mutations other than S531L and strains with mutations in all of the studied genes, grew more slowly than did drug-susceptible strains. However, some strains grew more quickly than drug-susceptible strains, such as those that had only the rpsL K43R mutation. Strains with the mutation katG S315T presented heterogeneous biological costs. When analyzed individually, strains with the mutations rpsL43/katG315, rpoB531, and rpoB531/katG315 grew faster than drug-susceptible strains. The results suggest that some strains with the most common mutations correlated to a high resistance toward streptomycin, isoniazid and rifampicin can grow as well as or better than susceptible strains.201323276692
522820.9984Mycobacterium bolletii respiratory infections. Contrary to other species in the Mycobacterium chelonae-abscessus complex, we reidentified M. bolletii strains isolated from 4 respiratory patients and found these strains to be uniformly resistant to clarithromycin. No mutations previously associated with macrolide resistance in bacteria were detected in either the 23S rDNA or the genes encoding riboproteins L4 and L22.200919193279
597630.9984fosM, a New Family of Fosfomycin Resistance Genes Identified in Bacterial Species Isolated from Human Microbiota. Fosfomycin is a decades-old antibiotic, currently reused because of its activity against multidrug-resistant bacteria. Here, we used a combined in vitro/in silico approach to search for fosfomycin resistance determinants in 25 new bacterial species isolated from the human microbiota. Putative resistance genes were cloned into a susceptible Escherichia coli strain. MIC values increased from 1 μg/ml to 1,024 μg/ml. Here, we report a new family of potential chromosomal fosfomycin resistance genes, named fosM.202133199384
596040.998416S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Most Helicobacter pylori strains are susceptible to tetracycline, an antibiotic commonly used for the eradication of H. pylori. However, an increase in incidence of tetracycline resistance in H. pylori has recently been reported. Here the mechanism of tetracycline resistance of the first Dutch tetracycline-resistant (Tet(r)) H. pylori isolate (strain 181) is investigated. Twelve genes were selected from the genome sequences of H. pylori strains 26695 and J99 as potential candidate genes, based on their homology with tetracycline resistance genes in other bacteria. With the exception of the two 16S rRNA genes, none of the other putative tetracycline resistance genes was able to transfer tetracycline resistance. Genetic transformation of the Tet(s) strain 26695 with smaller overlapping PCR fragments of the 16S rRNA genes of strain 181, revealed that a 361-bp fragment that spanned nucleotides 711 to 1071 was sufficient to transfer resistance. Sequence analysis of the 16S rRNA genes of the Tet(r) strain 181, the Tet(s) strain 26695, and four Tet(r) 26695 transformants showed that a single triple-base-pair substitution, AGA(926-928)-->TTC, was present within this 361-bp fragment. This triple-base-pair substitution, present in both copies of the 16S rRNA gene of all our Tet(r) H. pylori transformants, resulted in an increased MIC of tetracycline that was identical to that for the Tet(r) strain 181.200212183259
448750.9983Detecting mutations that confer oxazolidinone resistance in gram-positive bacteria. Resistance to oxazolidinone antibiotics, including linezolid, in Gram-positive bacteria is mediated by single-nucleotide polymorphisms (SNPs) in the 23S ribosomal RNA. A G2576U change (encoded by a G2576T mutation in the rRNA genes) is found in most resistant clinical isolates of enterococci and staphylococci; a variety of changes have been found in resistant mutants selected in vitro. Pyrosequencing can be used to detect SNPs known to confer oxazolidinone resistance, including the G2576T change. Most bacteria have more than one rRNA gene copy and Pyrosequencing can also be used for allele quantification, i.e., to estimate the proportions of mutant vs wild-type alleles. The number of mutated rRNA gene copies correlates roughly with the level of oxazolidinone resistance displayed by resistant isolates. This chapter summarizes the Pyrosequencing assays that have been developed in our laboratory for analyzing oxazolidinone-resistant enterococci and staphylococci.200717185761
598860.9983Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. While developing a rapid method to detect carriers of vancomycin-resistant enterococci (VRE), we found the vanB gene by PCR in 13 of 50 human faecal specimens that did not contain culturable VRE. Passaging under antibiotic selection allowed us to isolate two species of anaerobic bacteria that were vanB PCR positive, vancomycin resistant, and teicoplanin sensitive. Sequence analysis of the 16S rRNA genes showed that one isolate resembled Eggerthella lenta (98% identity), and the other Clostridium innocuum (92% identity). Southern hybridisation and nucleotide sequencing showed a vanB locus homologous to that in VRE. We propose that vanB resistance in enterococci might arise from gene transfer in the human bowel.200111265957
597170.9983Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. In this study the feasibility of 50- and 60-mer oligonucleotides in microarray analysis for the detection and identification of antibiotic resistance genes in various Salmonella strains was assessed. The specificity of the designed oligonucleotides was evaluated, furthermore the optimal spotting concentration was determined. The oligonucleotide microarray was used to screen two sets of Salmonella strains for the presence of several antibiotic resistance genes. Set 1 consisted of strains with variant Salmonella Genomic Island 1 (SGI1) multidrug resistance (MDR) regions of which the antibiotic resistance profiles and genotypes were known. The second set contained strains of which initially only phenotypic data were available. The microarray results of the first set of Salmonella strains perfectly matched with the phenotypic and genotypic information. The microarray data of the second set were almost completely in concordance with the available phenotypic data. It was concluded that the microarray technique in combination with random primed genomic labeling and 50- or 60-mer oligonucleotides is a powerful tool for the detection of antibiotic resistance genes in bacteria.200515823391
597080.9983DNA microarray for detection of macrolide resistance genes. A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria.200616723563
596890.9983A PCR assay for rapid detection of vancomycin-resistant enterococci. Since the first report of a vancomycin-resistant enterococcal clinical isolate, these Gram-positive bacteria have emerged as important nosocomial pathogens. Several glycopeptide resistance phenotypes can be distinguished on the basis of the level and inducibility of resistance to vancomycin and teicoplanin. In the present study, we developed a multiplex PCR, which allows the simultaneous identification of enterococci at the genus level and detection of the most frequent glycopeptide resistance genotypes. Five primer sets targeting the genes vanA, vanB, vanC1, vanC2/C3 and tuf were used in one reaction tube with bacterial DNA extracted from three to five colonies. This PCR method is suitable for the rapid detection of vancomycin-resistant enterococci.200212007446
5969100.9983Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance.200515872258
4490110.9983Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis. Rifampin is a major drug used to treat leprosy and tuberculosis. The rifampin resistance of Mycobacterium leprae and Mycobacterium tuberculosis results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. A method for the molecular determination of rifampin resistance in these two mycobacteria would be clinically valuable, but the relationship between the mutations and susceptibility to rifampin must be clarified before its use. Analyses of mutations responsible for rifampin resistance using clinical isolates present some limitations. Each clinical isolate has its own genetic variations in some loci other than rpoB, which might affect rifampin susceptibility. For this study, we constructed recombinant strains of Mycobacterium smegmatis carrying the M. leprae or M. tuberculosis rpoB gene with or without mutation and disrupted their own rpoB genes on the chromosome. The rifampin and rifabutin susceptibilities of the recombinant bacteria were measured to examine the influence of the mutations. The results confirmed that several mutations detected in clinical isolates of these two pathogenic mycobacteria can confer rifampin resistance, but they also suggested that some mutations detected in M. leprae isolates or rifampin-resistant M. tuberculosis isolates are not involved in rifampin resistance.201222252831
5081120.9983Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. The effectiveness of recommended first-line therapies for Helicobacter pylori infections is decreasing due to the occurrence of resistance to metronidazole and/or clarithromycin. Quadruple therapies, which include tetracycline and a bismuth salt, are useful alternative regimens. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA genes (rrnA and rrnB) affecting nucleotides 926 to 928, are already emerging and can impair the efficacies of such second-line regimens. Here, we describe a novel real-time PCR for the detection of 16S rRNA gene mutations associated with tetracycline resistance. Our PCR method was able to distinguish between wild-type strains and resistant strains exhibiting single-, double, or triple-base-pair mutations. The method was applicable both to DNA extracted from pure cultures and to DNA extracted from fresh or frozen H. pylori-infected gastric biopsy samples. We therefore conclude that this real-time PCR is an excellent method for determination of H. pylori tetracycline resistance even when live bacteria are no longer available.200516048919
6269130.9983Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Mutations in rRNA genes (rrn) that confer resistance to ribosomal inhibitors are typically recessive or weakly codominant and have been mostly reported for clinical strains of pathogens possessing only one or two rrn operons, such as Helicobacter pylori and Mycobacterium spp. An analysis of the genome sequences of several members of the Chlamydiaceae revealed that these obligate intracellular bacteria harbor only one or two sets of rRNA genes. To study the contribution of rRNA mutations to the emergence of drug resistance in the Chlamydiaceae, we used the sensitivities of Chlamydia trachomatis L2 (two rrn operons) and Chlamydophila psittaci 6BC (one rrn operon) to the aminoglycoside spectinomycin as a model. Confluent cell monolayers were infected in a plaque assay with about 10(8) wild-type infectious particles and then treated with the antibiotic. After a 2-week incubation time, plaques formed by spontaneous spectinomycin-resistant (Spc(r)) mutants appeared with a frequency of 5 x 10(-5) for C. psittaci 6BC. No Spc(r) mutants were isolated for C. trachomatis L2, although the frequencies of rifampin resistance were in the same range for both strains (i.e., 10(-7)). The risk of emergence of Chlamydia strains resistant to tetracyclines and macrolides, the ribosomal drugs currently used to treat chlamydial infections, is discussed.200515980362
5973140.9982DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria.200616427254
4687150.9982Distribution of Antibiotic Resistance Genes in Kocuria Species. BACKGROUD: Kocuria are widespread Gram-positive bacteria. Although they are traditionally classified as non-pathogenic, recent studies have shown that they can cause problems in various fields, from livestock and aquaculture to medicine. This has led to an increased need to understand their antibiotic resistance mechanisms in order to combat them. METHODS: To study the determinants of Kocuria antibiotic resistance, we used bioinformatics methods. To identify antibiotic resistance genes, we retrieved the complete genome sequences of Kocuria strains from the RefSeq database and screened them for antibiotic resistance determinants with different mechanisms of action. We also studied Kocuria strains in more detail: we sequenced whole genomes of K. carniphila 988, K. rhizophila 155, K. rosea 394 and K. rosea 397, and, in addition to bioinformatics studies, and tested five strains for their ability to grow in the presence of antibiotics. RESULTS: For these five strains, the presence of antibiotic resistance genes in their genomes correlated well with the observed resistance to the corresponding antibiotics: all 5 studied strains have a high level of resistance to chloramphenicol, in addition, K. carniphila 988 is highly resistant to azithromycin and avilamycin. CONCLUSIONS: Therefore, it has been demonstrated that antibiotic resistance genes are present in many Kocuria genomes and these genes are functional in the strains we have studied.202541148733
5835160.9982Rapid and Ultrasensitive Detection of Mutations and Genes Relevant to Antimicrobial Resistance in Bacteria. The worldwide emergence of multidrug-resistant (MDR) bacteria is associated with significant morbidity, mortality, and healthcare costs. Rapid and accurate diagnostic methods to detect antibiotic resistance are critical for antibiotic stewardship and infection control measurements. Here a cantilever nanosensor-based diagnostic assay is shown to detect single nucleotide polymorphisms (SNPs) and genes associated with antibiotic resistance in Gram negative (Pseudomonas aeruginosa) and positive (Enterococcus faecium) bacteria, representing frequent causes for MDR infections. Highly specific RNA capture probes for SNPs (ampR(D135G) or ampR(G154R) ) or resistance genes (vanA, vanB, and vanD) allow to detect the binding of bacterial RNA within less than 5 min. Serial dilutions of bacterial RNA indicate an unprecedented sensitivity of 10 fg µL(-1) total RNA corresponding to less than ten bacterial cells for SNPs and 1 fg µL(-1) total RNA for vanD detection equivalent to single bacterial cell sensitivity.202133552553
4497170.9982Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm.201931448060
5967180.9982Metronidazole- and carbapenem-resistant bacteroides thetaiotaomicron isolated in Rochester, Minnesota, in 2014. Emerging antimicrobial resistance in members of the Bacteroides fragilis group is a concern in clinical medicine. Although metronidazole and carbapenem resistance have been reported in Bacteroides thetaiotaomicron, a member of the B. fragilis group, they have not, to the best of our knowledge, been reported together in the same B. thetaiotaomicron isolate. Herein, we report isolation of piperacillin-tazobactam-, metronidazole-, clindamycin-, ertapenem-, and meropenem-resistant B. thetaiotaomicron from a patient with postoperative intra-abdominal abscess and empyema. Whole-genome sequencing demonstrated the presence of nimD with at least a portion of IS1169 upstream, a second putative nim gene, two β-lactamase genes (one of which has not been previously reported), two tetX genes, tetQ, ermF, two cat genes, and a number of efflux pumps. This report highlights emerging antimicrobial resistance in B. thetaiotaomicron and the importance of identification and antimicrobial susceptibility testing of selected anaerobic bacteria.201525941219
5972190.9982Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.201729063318