In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
373701.0000In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis. The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10(-7), 1.4×10(-7), and 1.3×10(-8), respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics.201223124749
358610.9995Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species. With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. Limosibacillus reuteri and Lacticaseibacillus paracasei exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while Lactobacillus gasseri showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. Lactiplantibacillus plantarum, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations.202439403731
353020.9995Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Copper, an essential micronutrient, is supplemented in the diet at elevated levels to reduce morbidity and mortality and to promote growth in feedlot cattle. Gut bacteria exposed to copper can acquire resistance, which among enterococci is conferred by a transferable copper resistance gene (tcrB) borne on a plasmid. The present study was undertaken to investigate whether the feeding of copper at levels sufficient to promote growth increases the prevalence of the tcrB gene among the fecal enterococci of feedlot cattle. The study was performed with 261 crossbred yearling heifers housed in 24 pens, with pens assigned randomly to a 2×2 factorial arrangement of treatments consisting of dietary copper and a commercial linseed meal-based energy protein supplement. A total of 22 isolates, each identified as Enterococcus faecium, were positive for tcrB with an overall prevalence of 3.8% (22/576). The prevalence was higher among the cattle fed diets supplemented with copper (6.9%) compared to normal copper levels (0.7%). The tcrB-positive isolates always contained both erm(B) and tet(M) genes. Median copper MICs for tcrB-positive and tcrB-negative enterococci were 22 and 4 mM, respectively. The transferability of the tcrB gene was demonstrated via a filter-mating assay. Multilocus variable number tandem repeat analysis revealed a genetically diverse population of enterococci. The finding of a strong association between the copper resistance gene and other antibiotic (tetracycline and tylosin) resistance determinants is significant because enterococci remain potential pathogens and have the propensity to transfer resistance genes to other bacteria in the gut.201323666328
563430.9995Effects of antibiotic use in sows on resistance of E. coli and Salmonella enterica Typhimurium in their offspring. To determine effects of exposure of parental animals to antibiotics on antibiotic resistance in bacteria of offspring, sows were either treated or not treated with oxytetracycline prior to farrowing and their pigs were challenged with Salmonella enterica Typhimurium and treated or not treated with oxytetracycline and apramycin. Fecal Escherichia coli were obtained from sows, and E. coli and salmonella were recovered from pigs. Antibiotic resistance patterns of isolates were determined using a minimum inhibitory concentration (MIC) analysis. Polymerase chain reaction (PCR) and electroporation were used to characterize the genetic basis for the resistance and to determine the location of resistance genes. Treatments had little effect on resistance of the salmonella challenge organism. The greatest resistance to apramycin occurred in E. coli from pigs treated with apramycin and whose sows had earlier exposure to oxytetracycline. Resistance to oxytetracycline was consistently high throughout the study in isolates from all pigs and sows; however, greater resistance was noted in pigs nursing sows that had previous exposure to that drug. The aac(3)-IV gene, responsible for apramycin resistance, was found in approximately 90% of apramycin-resistant isolates and its location was determined to be on plasmids. Several resistant E. coli bio-types were found to contain the resistance gene. These results indicate that resistance to apramycin and oxytetracycline in E. coli of pigs is affected by previous use of oxytetracycline in sows.200516156702
353140.9994Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria.201931536878
358050.9994Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments. The transferability of a large plasmid that harbors a tetracycline resistance gene tet(S), to fish and human pathogens was assessed using electrotransformation and conjugation. The plasmid, originally isolated from fish intestinal Lactococcus lactis ssp. lactis KYA-7, has potent antagonistic activity against the selected recipients (Lactococcus garvieae and Listeria monocytogenes), preventing conjugation. Therefore the tetracycline resistance determinant was transferred via electroporation to L. garvieae. A transformant clone was used as the donor in conjugation experiments with three different L. monocytogenes strains. To our knowledge, this is the first study showing the transfer of an antibiotic resistance plasmid from fish-associated lactic bacteria to L. monocytogenes, even if the donor L. garvieae was not the original host of the tetracycline resistance but experimentally created by electroporation. These results demonstrate that the antibiotic resistance genes in the fish intestinal bacteria have the potential to spread both to fish and human pathogens, posing a risk to aquaculture and consumer safety.200919236483
358560.9994Effects of subtherapeutic concentrations of antimicrobials on gene acquisition events in Yersinia, Proteus, Shigella, and Salmonella recipient organisms in isolated ligated intestinal loops of swine. OBJECTIVE: To assess antimicrobial resistance and transfer of virulence genes facilitated by subtherapeutic concentrations of antimicrobials in swine intestines. ANIMALS: 20 anesthetized pigs experimentally inoculated with donor and recipient bacteria. PROCEDURES: 4 recipient pathogenic bacteria (Salmonella enterica serotype Typhimurium, Yersinia enterocolitica, Shigella flexneri, or Proteus mirabilis) were incubated with donor bacteria in the presence of subinhibitory concentrations of 1 of 16 antimicrobials in isolated ligated intestinal loops in swine. Donor Escherichia coli contained transferrable antimicrobial resistance or virulence genes. After coincubations, intestinal contents were removed and assessed for pathogens that acquired new antimicrobial resistance or virulence genes following exposure to the subtherapeutic concentrations of antimicrobials. RESULTS: 3 antimicrobials (apramycin, lincomycin, and neomycin) enhanced transfer of an antimicrobial resistance plasmid from commensal E coli organisms to Yersinia and Proteus organisms, whereas 7 antimicrobials (florfenicol, hygromycin, penicillin G, roxarsone, sulfamethazine, tetracycline, and tylosin) exacerbated transfer of an integron (Salmonella genomic island 1) from Salmonella organisms to Yersinia organisms. Sulfamethazine induced the transfer of Salmonella pathogenicity island 1 from pathogenic to nonpathogenic Salmonella organisms. Six antimicrobials (bacitracin, carbadox, erythromycin, sulfathiazole, tiamulin, and virginiamycin) did not mediate any transfer events. Sulfamethazine was the only antimicrobial implicated in 2 types of transfer events. CONCLUSIONS AND CLINICAL RELEVANCE: 10 of 16 antimicrobials at subinhibitory or subtherapeutic concentrations augmented specific antimicrobial resistance or transfer of virulence genes into pathogenic bacteria in isolated intestinal loops in swine. Use of subtherapeutic antimicrobials in animal feed may be associated with unwanted collateral effects.201323879845
358370.9994Transfer of a lincomycin-resistant plasmid between coagulase-negative staphylococci during soybean fermentation and mouse intestine passage. Staphylococcus equorum is a benign bacterium and the predominant species in high-salt fermented food. Some strains of S. equorum contain antibiotic-resistance plasmids, such as pSELNU1 that contains a lincosamide nucleotidyltransferase (lnuA) gene and confers resistance to lincomycin. Previously, we showed that pSELNU1 is transferred to other bacteria under laboratory growth conditions. However, it is not known if the plasmid can be transferred to other bacteria during food fermentation (in situ) or during passage through animal intestines (in vivo). In this study, we examined the in situ and in vivo transfer of pSELNU1 using Staphylococcus saprophyticus as a recipient. During soybean fermentation, pSELNU1 was transferred to S. saprophyticus at a rate of 1.9 × 10-5-5.6 × 10-6 per recipient in the presence of lincomycin. However, during passage through murine intestines, the plasmid was transferred at similar rates (1.3 × 10-5 per recipient) in the absence of lincomycin, indicating that the plasmid transfer is much more efficient under in vivo conditions. Based on these results, we conclude that it is prudent to examine food fermentation starter candidates for the presence of mobile genetic elements containing antibiotic resistance genes and to select candidates lacking these genes.201931132119
358280.9994Investigating the transmissibility of tet(W) in bifidobacteria exposed to acid and bile stress. Transfer of antibiotic resistance genes from probiotic bacteria to pathogens poses a safety concern. Orally administered probiotics are exposed to stressful conditions during gastrointestinal transit. In this study, filter mating experiments were performed to investigate the potential role of exposure of Bifidobacterium isolates to acid and bile stress on the transfer of a tetracycline resistance gene, tet(W), to Enterococcus faecalis ATCC 51299. No E. faecalis transconjugants were obtained after mating with either stressed or unstressed Bifidobacterium, thereby suggesting that tet(W) could not be transferred as a result of exposure to gastrointestinal stresses.201829662736
352990.9994High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. BACKGROUND: Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5 g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. FINDINGS: Weaned pigs were fed diets for 4 weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg kg(-1) analytical grade ZnO. DNA extracts from stomach, mid-jejunum, terminal ileum and colon ascendens were amplified by qPCR assays to quantify copy numbers for the tetracycline (tetA) and sulfonamide (sul1) resistance genes in Gram-negative bacteria. Overall, the combined data (n = 336) showed that copy numbers for tetracycline and sulfonamide resistance genes were significantly increased in the high zinc treatment compared to the low (tetA: p value < 10(-6); sul1: p value = 1 × 10(-5)) or intermediate (tetA: P < 1.6 × 10(-4); sul1: P = 3.2 × 10(-4)) zinc treatment. Regarding the time dependent development, no treatment effects were seen 1 week after weaning, but significant differences between high and low/intermediate zinc treatments evolved 2 weeks after weaning. The increased number of tetA and sul1 copies was not confined to the hind gut, but was already present in stomach contents. CONCLUSIONS: The results of this study suggest that the use of high doses of dietary zinc beyond 2 weeks after weaning should be avoided in pigs due to the possible increase of antibiotic resistance in Gram-negative bacteria.201526322131
5995100.9994In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. The ability of 14 Lactobacillus strains, isolated from fermented dry sausages, to transfer tetracycline resistance encoded by tet(M) through conjugation was examined using filter mating experiments. Seven out of 14 tetracycline-resistant Lactobacillus isolates were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from 10(-4) to 10(-6) transconjugants per recipient. Two of these strains could also transfer their resistance to Lactococcus lactis subsp. lactis, whereas no conjugal transfer to a Staphylococcus aureus recipient was found. These data suggest that meat lactobacilli might be reservoir organisms for acquired resistance genes that can be spread to other lactic acid bacteria. In order to assess the risk of this potential hazard, the magnitude of transfer along the food chain merits further research.200312900030
4572110.9994Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.202336462825
4583120.9994High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes.202336706580
5908130.9994Evaluation of Tetracycline Resistance and Determination of the Tentative Microbiological Cutoff Values in Lactic Acid Bacterial Species. Lactic acid bacteria (LAB) are widely used as probiotics in the food industry owing to their beneficial effects on human health. However, numerous antibiotic resistance genes have been found in LAB strains, especially tetracycline resistance genes. Notably, the potential transferability of these genes poses safety risks. To comprehensively evaluate tetracycline resistance in LAB, we determined the tetracycline susceptibility patterns of 478 LAB strains belonging to four genera and eight species. By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. Thus, based on the minimum inhibitory concentrations of tetracycline for these LAB strains, the species-specific microbiological cutoff values for Lactobacillus (para)gasseri, Lactobacillus johnsonii, and Lactobacillus crispatus to tetracycline were first developed using the Turnidge, Kronvall, and eyeball methods. The cutoff values for Lactiplantibacillus plantarum were re-established and could be used to better distinguish susceptible strains from strains with acquired resistance. Finally, we verified that these five genes play a role in tetracycline resistance and found that tet(M) and tet(W/N/W) are the most widely distributed tetracycline resistance genes in LAB.202134683449
4612140.9994Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. The food chain is considered one of the main routes of antibiotic resistance diffusion between animal and human population. The resistance to antimicrobial agents among enterococci could be related to the efficient exchange of transferable genetic elements. In this study a sausage model was used to evaluate the persistence of antibiotic resistant enterococci during meat fermentation and to assess horizontal gene transfer among bacteria involved in meat fermentation. Enterococcus faecalis OG1rf harbouring either pCF10 or pAMβ1 plasmid was used as donor strain. The analysis of population dynamics during fermentation confirmed that the human isolate E. faecalis OG1rf was able to colonize the meat ecosystem with similar growth kinetics to that of food origin enterococci and to transfer the mobile genetic elements coding for tetracycline and erythromycin resistances. Transconjugant strains were detected after only two days of fermentation and increased their numbers during ripening even in the absence of selective antibiotic pressure. By means of culture-dependent and -independent molecular techniques, transconjugant strains carrying both tetracycline and erythromycin resistance genes were identified in enterococci, pediococci, lactobacilli and staphylococci groups. Our results suggest that the sausage model provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among food microbiota.201222365347
7785150.9994Fate of Extracellular DNA in the Production of Fertilizers from Source-Separated Urine. The practice of urine source-separation for fertilizer production necessitates an understanding of the presence and impact of extracellular DNA in the urine. This study examines the fate of plasmid DNA carrying ampicillin and tetracycline resistance genes in aged urine, including its ability to be taken up and expressed by competent bacteria. Plasmid DNA incubated in aged urine resulted in a >2 log loss of bacterial transformation efficiency in Acinetobacter baylyi within 24 h. The concentration of ampicillin and tetracycline resistance genes, as measured with quantitative polymerase chain reaction, did not correspond with the observed transformation loss. When the plasmid DNA was incubated in aged urine that had been filtered (0.22 μm) or heated (75 °C), the transformation efficiencies were more stable than when the plasmids were incubated in unfiltered and unheated aged urine. Gel electrophoresis results indicated that plasmid linearization by materials larger than 100 kDa in the aged urine caused the observed transformation efficiency decreases. The results of this study suggest that extracellular DNA released into aged urine poses a low potential for the spread of antibiotic resistance genes to bacteria once it is released to the environment.202031965791
6001160.9994Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers.200919135099
3532170.9994Transfer of Antibiotic Resistance Plasmid from Commensal E. coli Towards Human Intestinal Microbiota in the M-SHIME: Effect of E. coli dosis, Human Individual and Antibiotic Use. Along with (in) direct contact with animals and a contaminated environment, humans are exposed to antibiotic-resistant bacteria by consumption of food. The implications of ingesting antibiotic-resistant commensal bacteria are unknown, as dose-response data on resistance transfer and spreading in our gut is lacking. In this study, transfer of a resistance plasmid (IncF), harbouring several antibiotic resistance genes, from a commensal E. coli strain towards human intestinal microbiota was assessed using a Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME). More specifically, the effect of the initial E. coli plasmid donor concentration (10(5) and 10(7) CFU/meal), antibiotic treatment (cefotaxime) and human individual (n = 6) on plasmid transfer towards lumen coliforms and anaerobes was determined. Transfer of the resistance plasmid to luminal coliforms and anaerobes was observed shortly after the donor strain arrived in the colon and was independent of the ingested dose. Transfer occurred in all six simulated colons and despite their unique microbial community composition, no differences could be detected in antibiotic resistance transfer rates between the simulated human colons. After 72 h, resistant coliform transconjugants levels ranged from 7.6 × 10(4) to 7.9 × 10(6) CFU(cefotaxime resistant)/Ml colon lumen. Presence of the resistance plasmid was confirmed and quantified by PCR and qPCR. Cefotaxime treatment led to a significant reduction (85%) in resistant coliforms, however no significant effect on the total number of cultivable coliforms and anaerobes was observed.202133670965
4908180.9994Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.202438191970
3696190.9994Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Children are very vulnerable to bacterial infections and they are sometimes subject to antimicrobials for healing. The presence of resistance genes may counteract effects of antimicrobials. This work has thereby compared the amount of tetracycline resistance genes, tet(A) and tet(B), between conventional and organic meat-based or vegetable-based baby foods and used the quantification of these genes to assess the presence of tetracycline residues in these samples. Counts of bacteria harboring the tet(A) gene were higher than those containing tet(B), and there was no difference between the organic and the conventional samples. Samples with detectable amounts of tetracycline residues were also positive for the presence of tet genes, and when the presence of the genes was not detected, the samples were also negative for the presence of residues. The percentages of tetracycline residues were higher in organic samples than in conventional ones. It cannot be concluded that organic formulas are safer than conventional ones for the studied parameters.201528231206