Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
372301.0000Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria. INTRODUCTION: Hospitals constitute a particular source of drug residues emission, especially antibiotics considered as the most critical therapeutic classes used in hospitals. Thus, the hospital wastewater can widely spread both types of emerging pollutants, antibiotic residues and antibiotic resistance bacteria. For this reason, antibiotics usage must be monitored. This study was conducted to investigate potential antibiotic compounds which can present potential environmental hazard and promote antibiotic resistance. METHODS: The consumption-based approach was adopted to calculate predicted antibiotic concentrations in hospital wastewaters. In the process, we assessed the antibiotics potential environmental hazard, with the hazard quotient between predicted concentrations and predicted no effect concentrations intended to be protective of ecological species. In order to evaluate the hospital contribution to antibiotic resistance bacteria promotion, we also compared predicted concentrations with predicted no effect concentrations as theoretical selective resistance bacteria. RESULTS: The highest expected concentrations in hospital wastewater were found for Penicillins and Cephalosporins being the most prescribed antibiotics in our context. We noted that among this class, Ampicillin is the most hazardous compound followed by Imipenem and Gentamicin as exclusive hospital use antibiotics, in spite of their low consumption. The results showed also that Ampicillin, Amoxicillin, and Ceftriaxone had a high ratio of potential antibiotic resistance bacteria promotion, confirming the correlation found previously between abundance of resistant bacteria and the corresponding effluent antibiotic concentrations. Nevertheless, the promotion of resistance selection can also be attributed to Imipenem and Ciprofloxacin as little-used antibiotics and occur at low to moderate levels in hospital wastewater. CONCLUSION: This study identified the profile antibiotics consumption and their potential environmental hazard contribution and antibiotic resistant bacteria promotion. It can help decision-makers make appropriate management decisions, especially preventive measures related to antibiotic use pattern, as neither dilution nor treatment can eliminate antibiotic residues and antibiotic resistance genes.202234113952
372410.9999A phenotypic study of the resistome in a peri-urban ecosystem. Since the discovery of antibiotics, the dispersion of resistance genes has increased exponentially, leading to the current state in which it has become increasingly difficult to achieve an effective treatment for infectious diseases. The enormous capacity for genetic exchange between microorganisms is causing resistance genes to be able to reach all environments, even those where there is no anthropogenic impact or exposure to these drugs. In this work, a phenotypic study of the resistome has been conducted in a peri-urban ecosystem (Granada, Spain), wherein the resistance to 32 antibiotics of 710 bacterial strains isolated from 70 samples from different ecological niches with varying levels of exposure to antibiotics and anthropic action has been determined. The study of resistances using phenotypic procedures constitutes a very useful and complementary alternative to genomic methods. The obtained results show a high percentage of resistance in all the subsystems analysed, stating high multi-resistance profiles. Vancomycin and erythromycin were the antibiotics to which the highest levels of resistance were observed, whereas the lowest levels were obtained in chloramphenicol. Regarding the environments studied, the highest percentages of resistance were found in wastewater, farms and food. It should be noted that in natural soil samples (not exposed to antibiotics or anthropogenic activities), worrying levels of resistance to practically all the groups of antibiotics analysed were detected. These results support the generally accepted conclusion that an appropriate control and management of wastewater and solid waste that may contain antibiotics or resistant bacteria is really important to prevent the wide propagation of the resistome in the environment.202539557147
340420.9999Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. The high use of antibiotics in human and veterinary medicine has led to a wide spread of antibiotics and antimicrobial resistance into the environment. In recent years, various studies have shown that antibiotic residues, resistant bacteria and resistance genes, occur in aquatic environments and that clinical wastewater seems to be a hot spot for the environmental spread of antibiotic resistance. Here a representative statistical analysis of various sampling points is presented, containing different proportions of clinically influenced wastewater. The statistical analysis contains the calculation of the odds ratios for any combination of antibiotics with resistant bacteria or resistance genes, respectively. The results were screened for an increased probability of detecting resistant bacteria, or resistance genes, with the simultaneous presence of antibiotic residues. Positive associated sets were then compared, with regards to the detected median concentration, at the investigated sampling points. All results show that the sampling points with the highest proportion of clinical wastewater always form a distinct cluster concerning resistance. The results shown in this study lead to the assumption that ciprofloxacin is a good indicator of the presence of multidrug resistant P. aeruginosa and extended spectrum β-lactamase (ESBL)-producing Klebsiella spec., Enterobacter spec. and Citrobacter spec., as it positively relates with both parameters. Furthermore, a precise relationship between carbapenemase genes and meropenem, regarding the respective sampling sites, could be obtained. These results highlight the role of clinical wastewater for the dissemination and development of multidrug resistance.202031622887
328730.9999Antimicrobial resistance screening and profiles: a glimpse from the South African perspective. According to the Centre for Disease Dynamics Economics and Policy, South Africa represents a paradox of antibiotic management similar to other developing countries, with both overuse and underuse (resulting from lack of access) of antibiotics. In addition, wastewater reuse may contribute towards antibiotic resistance through selective pressure that increases resistance in native bacteria and on clinically relevant bacteria, increasing resistance profiles of the common pathogens. Sediments of surface water bodies and wastewater sludge provide a place where antibiotic resistance genes are transferred to other bacteria. Crop irrigation is thought to be a potential source of exposure to antibiotic-resistant bacteria through the transfer from the water or sludge into crops. The objectives of this study were to examine the antibiotic-resistance profiles of Escherishia coli from three agricultural locations in the Western Cape, South Africa. Using a classical microbiology culture approach, the resistance profiles of E. coli species isolated from river water and sediments, farm dams and their sediments and a passive algal wastewater treatment ponds and sediment used for crop irrigation were assessed for resistance to 13 commonly used antibiotics. Randomly selected E. coli isolates from the sediment and water were tested for resistance. 100% of E. coli isolates were resistant to sulphamethoxazole, highlighting its relevance in the South African context. In river water and farm dam samples, only the E. coli isolated from sediment were found to be resistant to fluoroquinolone or fluorifenicol. In the wastewater treatment ponds, the resistance profiles of E. coli isolated from sediments differed from those isolated from effluent, with 90% of the effluent isolates being resistant to ampicillin. Isolates from the sediment were less resistant (40%) to ampicillin, whereas all the isolates from the pond water and sediment samples were resistant to sulphamethoxazole. These results illustrate the importance of developing a better understanding of antibiotic resistance in agriculture and wastewater scenarios to ensure remedial measures take place where the greatest benefit can be realised especially in countries with limited financial and infrastructural resources. Moreover, the potential for passive algal treatment as an effective, feasible alternative for wastewater treatment is highlighted, with comparable resistance profiles and a reducing overall resistance in the sediment samples.202033328364
346240.9999Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. AIMS: The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS: In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS: Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.202438627246
368150.9999A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
346860.9999Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145
458170.9999Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.201425408688
388780.9999Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., "reporting the water bacterial community composition", "resistance to antibiotics", and "antibiotic resistance genes (ARG)", were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.202133673692
340590.9999Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%-85% of the erm gene diversity in the manures analyzed.201829346541
3682100.9999Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.201627789876
3685110.9999Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment.201829704804
3935120.9999Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. The use of antimicrobials in the food animal industry has caused an increased prevalence of antimicrobial-resistant bacteria and antimicrobial resistance genes, which can be transferred to the microbiota of humans through the food chain or the environment. To reduce the development and spread of antimicrobial resistance, restrictions on antimicrobial use in food animals have been implemented in different countries. We investigated the impact of an antimicrobial restriction intervention during two generations of pigs. Fecal samples were collected in five growth phases. The frequency of antimicrobial-resistant coliforms and antimicrobial-resistant bacteria or antimicrobial resistance genes was analyzed. No differences in the richness or abundance of antimicrobial-resistant coliforms or antimicrobial resistance genes were found when animals fed with or without prophylactic antimicrobials were compared. Withholding antimicrobial supplementation did not negatively affect weight gain in pigs. Withdrawal of prophylactic antimicrobial consumption during two generations of pigs was not enough to reduce the prevalence of antimicrobial resistance genes, as measured by richness and abundance markers. This study indicates that the fitness costs associated with bacterial carriage of some antimicrobial resistance genes are low.202134872396
3376130.9999Biocide resistant and antibiotic cross-resistant potential pathogens from sewage and river water from a wastewater treatment facility in the North-West, Potchefstroom, South Africa. Exposure to antibiotics, biocides, chemical preservatives, and heavy metals in different settings such as wastewater treatment plants (WWTPs) may apply selective pressure resulting in the enrichment of multiple resistant, co- and cross-resistant strains of bacteria. The purpose of this study was to identify and characterize potentially pathogenic triclosan (TCS) - and/or, chloroxylenol (PCMX) tolerant bacteria from sewage and river water in the North-West, Potchefstroom, South Africa. Several potential pathogens were identified, with Aeromonas isolates being most abundant. Clonal relationships between Aeromonas isolates found at various sampling points were elucidated using ERIC-PCR. Selected isolates were characterized for their minimum inhibitory concentrations against the biocides, as well as antibiotic resistance profiles, followed by an evaluation of synergistic and antagonistic interactions between various antimicrobials. Isolates were also screened for the presence of extracellular enzymes associated with virulence. High-performance liquid chromatography revealed the presence of both biocides in the wastewater, but fingerprinting methods did not reveal whether the WWTP is the source from which these organisms enter the environment. Isolates exhibited various levels of resistance to antimicrobials as well as several occurrences of synergy and antagonisms between the biocides and select antibiotics. Several isolates had a very high potential for virulence but further study is required to identify the specific virulence and resistance genes associated with the isolates in question.201931596266
4653140.9999Modelling the effectiveness of surveillance based on metagenomics in detecting, monitoring, and forecasting antimicrobial resistance in livestock production under economic constraints. Current surveillance of antimicrobial resistance (AMR) is mostly based on testing indicator bacteria using minimum inhibitory concentration (MIC) panels. Metagenomics has the potential to identify all known antimicrobial resistant genes (ARGs) in complex samples and thereby detect changes in the occurrence earlier. Here, we simulate the results of an AMR surveillance program based on metagenomics in the Danish pig population. We modelled both an increase in the occurrence of ARGs and an introduction of a new ARG in a few farms and the subsequent spread to the entire population. To make the simulation realistic, the total cost of the surveillance was constrained, and the sampling schedule was set at one pool per month with 5, 20, 50, or 100 samples. Our simulations demonstrate that a pool of 20-50 samples and a sequencing depth of 250 million fragments resulted in the shortest time to detection in both scenarios, with a time delay to detection of change of [Formula: see text]15 months in all scenarios. Compared with culture-based surveillance, our simulation indicates that there are neither significant reductions nor increases in time to detect a change using metagenomics. The benefit of metagenomics is that it is possible to monitor all known resistance in one sampling and laboratory procedure in contrast to the current monitoring that is based on the phenotypic characterisation of selected indicator bacterial species. Therefore, overall changes in AMR in a population will be detected earlier using metagenomics due to the fact that the resistance gene does not have to be transferred to and expressed by an indicator bacteria before it is possible to detect.202337990114
4579150.9999Selection for amoxicillin-, doxycycline-, and enrofloxacin-resistant Escherichia coli at concentrations lower than the ECOFF in broiler-derived cecal fermentations. Antimicrobial resistance (AMR) is an emerging worldwide problem and a health threat for humans and animals. Antimicrobial usage in human and animal medicine or in agriculture results in selection for AMR. The selective concentration of antimicrobial compounds can be lower than the minimum inhibitory concentration and differs between environments, which can be a reason for bacterial resistance. Therefore, knowledge of the minimal selective concentration (MSC), under natural conditions, is essential to understand the selective window of bacteria when exposed to residual antimicrobials. In this study, we estimated the MSCs of three antimicrobials, amoxicillin, doxycycline, and enrofloxacin in a complex microbial community by conducting fermentation assays with cecal material derived from broilers. We examined the phenotypic resistance of Escherichia coli, resistome, and microbiome after 6 and 30 hours of fermenting in the presence of the antimicrobials of interest. The concentrations were estimated to be 10-100 times lower than the epidemiological cut-off values in E. coli for the respective antimicrobials as determined by EUCAST, resulting in an MSC between 0.08 and 0.8 mg/L for amoxicillin, 0.4 and 4 mg/L for doxycycline, and 0.0125 and 0.125 mg/L for enrofloxacin. Additionally, resistome analysis provided an MSC for doxycycline between 0.4 and 4 mg/L, but amoxicillin and enrofloxacin exposure did not induce a significant difference. Our findings indicate at which concentrations there is still selection for antimicrobial-resistant bacteria. This knowledge can be used to manage the risk of the emergence of antimicrobial-resistant bacteria.IMPORTANCEAntimicrobial resistance possibly affects human and animal health, as well as economic prosperity in the future. The rise of antimicrobial-resistant bacteria is a consequence of using antimicrobial compounds in humans and animals selecting for antimicrobial-resistant bacteria. Concentrations reached during treatment are known to be selective for resistant bacteria. However, at which concentrations residues are still selective is important, especially for antimicrobial compounds that remain in the environment at low concentrations. The data in this paper might inform decisions regarding guidelines and regulations for the use of specific antimicrobials. In this study, we are providing these minimal selective concentrations for amoxicillin, doxycycline, and enrofloxacin in complex environments.202439269186
6566160.9999Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.202134247085
3720170.9998Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to β-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Koziegłowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.202133385807
3721180.9998Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria. The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.202033258596
3427190.9998Annual changes in the occurrence of antibiotic-resistant coliform bacteria and enterococci in municipal wastewater. Wastewater contains subinhibitory concentrations of different micropollutants such as antibiotics that create selective pressure on bacteria. This phenomenon is also caused by insufficient wastewater treatment technology leading to the development and spread of antibiotic-resistant bacteria and resistance genes into the environment. Therefore, this work focused on monitoring of antibiotic-resistant coliform bacteria and enterococci in influent and effluent wastewaters taken from the second biggest wastewater treatment plant (Petržalka) in the capital of Slovakia during 1 year. Antibiotic-resistant strains were isolated, identified, and characterized in terms of susceptibility and biofilm production. All of 27 antibiotic-resistant isolates were identified mainly as Morganella morganii, Citrobacter spp., and E. coli. Multidrug-resistance was detected in 58% of isolated strains. All tested isolates could form biofilm; two strains were very strong producers, and 74% formed biofilm by strong intensity. The flow rate of the influent wastewater had a more significant impact on the number of studied bacteria than the temperature. Graphical abstract.201931049859