Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
372201.0000Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area. AIMS: To assess antibiotic resistance in airborne bacteria associated with coarse particulate matter (PM10) in an urban area, with specific considerations about the Staphylococcus genus. METHODS AND RESULTS: Disc diffusion test was performed on 243 microbial strains, isolated from PM10 in winter and summer and belonging to families Pseudomonadaceae and Enterobacteriaceae and genera Acinetobacter, Enterococcus and Staphylococcus. Staphylococci resistances were the most heterogeneous, being distributed among almost all tested antibiotics. Staphylococcus isolates resistant to some selected antibiotics were further investigated for the presence of the corresponding genetic determinants. Only tetK, which mediates the tetracycline resistance through the action of an efflux protein, was found in almost all resistant isolates. CONCLUSIONS: The lack of specific genetic determinants makes their transmission among staphylococci less likely. This may reduce the theoretical risk associated with the inhalation of airborne micro-organisms. SIGNIFICANCE AND IMPACT OF STUDY: Although the spreading of antibiotic resistant micro-organisms is of particular concern in clinical settings, the origin of antibiotic resistance genes can be traced in natural environments. As behaviour, viability and transport of bacteria in the atmospheric compartment suffer from a lack of information, the evaluation of the actual risk posed by airborne micro-organisms to human health is still challenging.201121447020
372310.9998Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria. INTRODUCTION: Hospitals constitute a particular source of drug residues emission, especially antibiotics considered as the most critical therapeutic classes used in hospitals. Thus, the hospital wastewater can widely spread both types of emerging pollutants, antibiotic residues and antibiotic resistance bacteria. For this reason, antibiotics usage must be monitored. This study was conducted to investigate potential antibiotic compounds which can present potential environmental hazard and promote antibiotic resistance. METHODS: The consumption-based approach was adopted to calculate predicted antibiotic concentrations in hospital wastewaters. In the process, we assessed the antibiotics potential environmental hazard, with the hazard quotient between predicted concentrations and predicted no effect concentrations intended to be protective of ecological species. In order to evaluate the hospital contribution to antibiotic resistance bacteria promotion, we also compared predicted concentrations with predicted no effect concentrations as theoretical selective resistance bacteria. RESULTS: The highest expected concentrations in hospital wastewater were found for Penicillins and Cephalosporins being the most prescribed antibiotics in our context. We noted that among this class, Ampicillin is the most hazardous compound followed by Imipenem and Gentamicin as exclusive hospital use antibiotics, in spite of their low consumption. The results showed also that Ampicillin, Amoxicillin, and Ceftriaxone had a high ratio of potential antibiotic resistance bacteria promotion, confirming the correlation found previously between abundance of resistant bacteria and the corresponding effluent antibiotic concentrations. Nevertheless, the promotion of resistance selection can also be attributed to Imipenem and Ciprofloxacin as little-used antibiotics and occur at low to moderate levels in hospital wastewater. CONCLUSION: This study identified the profile antibiotics consumption and their potential environmental hazard contribution and antibiotic resistant bacteria promotion. It can help decision-makers make appropriate management decisions, especially preventive measures related to antibiotic use pattern, as neither dilution nor treatment can eliminate antibiotic residues and antibiotic resistance genes.202234113952
395120.9998Diversity and genetic lineages of environmental staphylococci: a surface water overview. Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.202032949464
372430.9998A phenotypic study of the resistome in a peri-urban ecosystem. Since the discovery of antibiotics, the dispersion of resistance genes has increased exponentially, leading to the current state in which it has become increasingly difficult to achieve an effective treatment for infectious diseases. The enormous capacity for genetic exchange between microorganisms is causing resistance genes to be able to reach all environments, even those where there is no anthropogenic impact or exposure to these drugs. In this work, a phenotypic study of the resistome has been conducted in a peri-urban ecosystem (Granada, Spain), wherein the resistance to 32 antibiotics of 710 bacterial strains isolated from 70 samples from different ecological niches with varying levels of exposure to antibiotics and anthropic action has been determined. The study of resistances using phenotypic procedures constitutes a very useful and complementary alternative to genomic methods. The obtained results show a high percentage of resistance in all the subsystems analysed, stating high multi-resistance profiles. Vancomycin and erythromycin were the antibiotics to which the highest levels of resistance were observed, whereas the lowest levels were obtained in chloramphenicol. Regarding the environments studied, the highest percentages of resistance were found in wastewater, farms and food. It should be noted that in natural soil samples (not exposed to antibiotics or anthropogenic activities), worrying levels of resistance to practically all the groups of antibiotics analysed were detected. These results support the generally accepted conclusion that an appropriate control and management of wastewater and solid waste that may contain antibiotics or resistant bacteria is really important to prevent the wide propagation of the resistome in the environment.202539557147
346840.9998Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145
372050.9998Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to β-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Koziegłowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.202133385807
368160.9998A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
340570.9998Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%-85% of the erm gene diversity in the manures analyzed.201829346541
347180.9998The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. The emergence of clinically relevant β-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of β-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu(2+) and Zn(2+)) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu(2+) and Zn(2+)) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.202133035873
388790.9998Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., "reporting the water bacterial community composition", "resistance to antibiotics", and "antibiotic resistance genes (ARG)", were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.202133673692
3426100.9998Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. Abstract In view of the increasing interest in the possible role played by hospital and municipal wastewater systems in the selection of antibiotic-resistant bacteria, biofilms were investigated using enterococci, staphylococci, Enterobacteriaceae, and heterotrophic bacteria as indicator organisms. In addition to wastewater, biofilms were also investigated in drinking water from river bank filtrate to estimate the occurrence of resistant bacteria and their resistance genes, thus indicating possible transfer from wastewater and surface water to the drinking water distribution network. Vancomycin-resistant enterococci were characterized by antibiograms, and the vanA resistance gene was detected by molecular biology methods, including PCR. The vanA gene was found not only in wastewater biofilms but also in drinking water biofilms in the absence of enterococci, indicating possible gene transfer to autochthonous drinking water bacteria. The mecA gene encoding methicillin resistance in staphylococci was detected in hospital wastewater biofilms but not in any other compartment. Enterobacterial ampC resistance genes encoding beta-lactamase activities were amplified by PCR from wastewater, surface water and drinking water biofilms.200319719664
3696110.9998Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Children are very vulnerable to bacterial infections and they are sometimes subject to antimicrobials for healing. The presence of resistance genes may counteract effects of antimicrobials. This work has thereby compared the amount of tetracycline resistance genes, tet(A) and tet(B), between conventional and organic meat-based or vegetable-based baby foods and used the quantification of these genes to assess the presence of tetracycline residues in these samples. Counts of bacteria harboring the tet(A) gene were higher than those containing tet(B), and there was no difference between the organic and the conventional samples. Samples with detectable amounts of tetracycline residues were also positive for the presence of tet genes, and when the presence of the genes was not detected, the samples were also negative for the presence of residues. The percentages of tetracycline residues were higher in organic samples than in conventional ones. It cannot be concluded that organic formulas are safer than conventional ones for the studied parameters.201528231206
3719120.9998Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment. Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE: Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health.201627422829
3695130.9998Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Shrimp farming is a sufficiently large and mature industry to have an effective range of antimicrobial agents for most bacterial diseases in shrimp culture. However, at present, there exists great concern over the widespread use of antibiotics in aquaculture, which may result in residue of antibiotics in water and mud, and subsequently, the development of antibiotic resistance in bacteria in the environment. There is limited understanding about the effect of antibiotic residues on bacteria resistance in shrimp farming environment. Therefore, a study was conducted to investigate bacterial resistance to Norfloxacin (NFXC), Oxolinic Acid (OXLA), Trimethoprim (TMP) and Sulfamethoxazole (SMX), which were found in four shrimp farming locations in mangrove areas in Vietnam. Findings indicate that there is a relatively high incidence of bacteria resistance to these antibiotics observed in most of the studied sites, particularly to antibiotics with concentration of 0.1 microg/ml. Yet the relation between concentration of antibiotic residues and incidence of antibiotic resistance is not clearly defined. Among individual antibiotics, the incidence of resistance to TMP and SMX was higher than the others. Identification of bacteria isolated from mud samples by DNA analyzer shows that Bacillus and Vibrio are predominant among bacteria resistant to the antibiotics. The result of the study also indicates that these antibiotics in media degraded more rapidly due to the presence of resistant bacteria.200516198672
6564140.9998Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance. The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies.201526198413
3932150.9998Acquired antibiotic resistance: are we born with it? The rapid emergence of antibiotic resistance (AR) is a major public health concern. Recent findings on the prevalence of food-borne antibiotic-resistant (ART) commensal bacteria in ready-to-consume food products suggested that daily food consumption likely serves as a major avenue for dissemination of ART bacteria from the food chain to human hosts. To properly assess the impact of various factors, including the food chain, on AR development in hosts, it is important to determine the baseline of ART bacteria in the human gastrointestinal (GI) tract. We thus examined the gut microbiota of 16 infant subjects, from the newborn stage to 1 year of age, who fed on breast milk and/or infant formula during the early stages of development and had no prior exposure to antibiotics. Predominant bacterial populations resistant to several antibiotics and multiple resistance genes were found in the infant GI tracts within the first week of age. Several ART population transitions were also observed in the absence of antibiotic exposure and dietary changes. Representative AR gene pools including tet(M), ermB, sul2, and bla(TEM) were detected in infant subjects. Enterococcus spp., Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia coli/Shigella spp. were among the identified AR gene carriers. ART bacteria were not detected in the infant formula and infant foods examined, but small numbers of skin-associated ART bacteria were found in certain breast milk samples. The data suggest that the early development of AR in the human gut microbiota is independent of infants' exposure to antibiotics but is likely impacted by exposure to maternal and environmental microbes during and after delivery and that the ART population is significantly amplified within the host even in the absence of antibiotic selective pressure.201121821748
3404160.9998Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. The high use of antibiotics in human and veterinary medicine has led to a wide spread of antibiotics and antimicrobial resistance into the environment. In recent years, various studies have shown that antibiotic residues, resistant bacteria and resistance genes, occur in aquatic environments and that clinical wastewater seems to be a hot spot for the environmental spread of antibiotic resistance. Here a representative statistical analysis of various sampling points is presented, containing different proportions of clinically influenced wastewater. The statistical analysis contains the calculation of the odds ratios for any combination of antibiotics with resistant bacteria or resistance genes, respectively. The results were screened for an increased probability of detecting resistant bacteria, or resistance genes, with the simultaneous presence of antibiotic residues. Positive associated sets were then compared, with regards to the detected median concentration, at the investigated sampling points. All results show that the sampling points with the highest proportion of clinical wastewater always form a distinct cluster concerning resistance. The results shown in this study lead to the assumption that ciprofloxacin is a good indicator of the presence of multidrug resistant P. aeruginosa and extended spectrum β-lactamase (ESBL)-producing Klebsiella spec., Enterobacter spec. and Citrobacter spec., as it positively relates with both parameters. Furthermore, a precise relationship between carbapenemase genes and meropenem, regarding the respective sampling sites, could be obtained. These results highlight the role of clinical wastewater for the dissemination and development of multidrug resistance.202031622887
7406170.9998Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance.201727822686
3401180.9998Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. Pseudomonas aeruginosa is an opportunistic pathogen, which can have several virulence factors that confer on it the ability to cause severe, acute and chronic infections. Thus, the simultaneous occurrence of resistance to antibiotics and heavy metals associated with the presence of virulence genes is a potential threat to human health and environmental balance. This study aimed to investigate the resistance profile to heavy metals and the correlation of this phenotype of resistance to antimicrobials and to investigate the pathogenic potential of 46 P. aeruginosa isolates obtained from the soil of five Brazilian regions. The bacteria were evaluating for antimicrobial and heavy metal resistance, as well as the presence of plasmids and virulence genes. The isolates showed resistance to four different antibiotics and the majority (n = 44) had resistance to aztreonam or ticarcillin, furthermore, 32 isolates showed concomitant resistance to both of these antibiotics. A high prevalence of virulence genes was found, which highlights the pathogenic potential of the studied environmental isolates. Moreover, a high frequency of heavy metal resistance genes was also detected, however, the phenotypic results indicated that other genes and/or mechanisms should be related to heavy metal resistance.201627197940
3884190.9998Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.201223133629