Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
372001.0000Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to β-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Koziegłowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.202133385807
368110.9999A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
656720.9999Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Freshwater environments are susceptible to possible contamination by residual antibiotics that are released through different sources, such as agricultural runoffs, sewage discharges and leaching from nearby farms. Freshwater environment can thus become reservoirs where an antibiotic impact microorganisms, and is an important public health concern. Degradation and dilution processes are fundamental for predicting the actual risk of antibiotic resistance dissemination from freshwater reservoirs. This study reviews major approaches for detecting and quantifying antibiotic resistance bacteria (ARBs) and genes (ARGs) in freshwater and their prevalence in these environments. Finally, the role of dilution, degradation, transmission and the persistence and fate of ARB/ARG in these environments are also reviewed. Culture-based single strain approaches and molecular techniques that include polymerase chain reaction (PCR), quantitative polymerase chain reaction (qPCR) and metagenomics are techniques for quantifying ARB and ARGs in freshwater environments. The level of ARBs is extremely high in most of the river systems (up to 98% of the total detected bacteria), followed by lakes (up to 77% of the total detected bacteria), compared to dam, pond, and spring (<1%). Of most concern is the occurrence of extended-spectrum β-lactamase producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE), which cause highly epidemic infections. Dilution and natural degradation do not completely eradicate ARBs and ARGs in the freshwater environment. Even if the ARBs in freshwater are effectively inactivated by sunlight, their ARG-containing DNA can still be intact and capable of transferring resistance to non-resistant strains. Antibiotic resistance persists and is preserved in freshwater bodies polluted with high concentrations of antibiotics. Direct transmission of indigenous freshwater ARBs to humans as well as their transitory insertion in the microbiota can occur. These findings are disturbing especially for people that rely on freshwater resources for drinking, crop irrigation, and food in form of fish.201931465907
368330.9999Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship.201830043816
739740.9999Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones.201626978717
732450.9999Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.202032140141
372160.9999Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria. The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.202033258596
346870.9999Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145
368280.9999Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.201627789876
347190.9999The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. The emergence of clinically relevant β-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of β-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu(2+) and Zn(2+)) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu(2+) and Zn(2+)) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.202133035873
3680100.9999Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment.201830459724
3719110.9999Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment. Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE: Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health.201627422829
6568120.9999Antibiotic resistance genes in water environment. The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.200919130050
3426130.9999Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. Abstract In view of the increasing interest in the possible role played by hospital and municipal wastewater systems in the selection of antibiotic-resistant bacteria, biofilms were investigated using enterococci, staphylococci, Enterobacteriaceae, and heterotrophic bacteria as indicator organisms. In addition to wastewater, biofilms were also investigated in drinking water from river bank filtrate to estimate the occurrence of resistant bacteria and their resistance genes, thus indicating possible transfer from wastewater and surface water to the drinking water distribution network. Vancomycin-resistant enterococci were characterized by antibiograms, and the vanA resistance gene was detected by molecular biology methods, including PCR. The vanA gene was found not only in wastewater biofilms but also in drinking water biofilms in the absence of enterococci, indicating possible gene transfer to autochthonous drinking water bacteria. The mecA gene encoding methicillin resistance in staphylococci was detected in hospital wastewater biofilms but not in any other compartment. Enterobacterial ampC resistance genes encoding beta-lactamase activities were amplified by PCR from wastewater, surface water and drinking water biofilms.200319719664
6566140.9998Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.202134247085
7396150.9998Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. River sediments are regarded as hot spots of bacterial density and activity. Moreover, high bacterial densities and biofilm formation are known to promote horizontal gene transfer, the latter playing a vital role in the spread of antimicrobial resistance. It can thus be hypothesized that sediments act as a reservoir of antibiotic resistant bacteria (ARB) and resistance genes (ARGs), particularly in rivers receiving microbes and drug residues from treated sewage. We analyzed the phenotypic susceptibility of 782 Escherichia coli isolates against 24 antimicrobials and we measured the relative abundances of five ARGs in water and sediment extracts of a small stream. We did not find evidence for a general increase in the proportion of resistant E. coli isolated from sediments as compared to those found in stream water. For most antimicrobials, the likelihood of detecting a resistant isolate was similar in water and sediment or it was even lower in the latter compartment. The mean relative abundance of ARGs was moderately increased in sediment-borne samples. Generally, absolute abundances of resistant cells and resistance genes in the sediment exceeded the pelagic level owing to higher bacterial densities. The river bottom thus represents a reservoir of ARB and ARGs that can be mobilized by resuspension.201829982428
3723160.9998Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria. INTRODUCTION: Hospitals constitute a particular source of drug residues emission, especially antibiotics considered as the most critical therapeutic classes used in hospitals. Thus, the hospital wastewater can widely spread both types of emerging pollutants, antibiotic residues and antibiotic resistance bacteria. For this reason, antibiotics usage must be monitored. This study was conducted to investigate potential antibiotic compounds which can present potential environmental hazard and promote antibiotic resistance. METHODS: The consumption-based approach was adopted to calculate predicted antibiotic concentrations in hospital wastewaters. In the process, we assessed the antibiotics potential environmental hazard, with the hazard quotient between predicted concentrations and predicted no effect concentrations intended to be protective of ecological species. In order to evaluate the hospital contribution to antibiotic resistance bacteria promotion, we also compared predicted concentrations with predicted no effect concentrations as theoretical selective resistance bacteria. RESULTS: The highest expected concentrations in hospital wastewater were found for Penicillins and Cephalosporins being the most prescribed antibiotics in our context. We noted that among this class, Ampicillin is the most hazardous compound followed by Imipenem and Gentamicin as exclusive hospital use antibiotics, in spite of their low consumption. The results showed also that Ampicillin, Amoxicillin, and Ceftriaxone had a high ratio of potential antibiotic resistance bacteria promotion, confirming the correlation found previously between abundance of resistant bacteria and the corresponding effluent antibiotic concentrations. Nevertheless, the promotion of resistance selection can also be attributed to Imipenem and Ciprofloxacin as little-used antibiotics and occur at low to moderate levels in hospital wastewater. CONCLUSION: This study identified the profile antibiotics consumption and their potential environmental hazard contribution and antibiotic resistant bacteria promotion. It can help decision-makers make appropriate management decisions, especially preventive measures related to antibiotic use pattern, as neither dilution nor treatment can eliminate antibiotic residues and antibiotic resistance genes.202234113952
3980170.9998Antimicrobial resistance in dairy slurry tanks: A critical point for measurement and control. Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.202236122459
6573180.9998The bacterial biofilm resistome in drinking water distribution systems: A systematic review. Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.202337059195
3253190.9998Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species.202336760505