# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3716 | 0 | 1.0000 | Transfer of antibiotic resistance genes between Enterococcus faecalis strains in filter feeding zooplankton Daphnia magna and Daphnia pulex. Antibiotic resistant bacteria from faecal pollution sources are pervasive in aquatic environments. A facilitating role for the emergence of waterborne, multi-drug resistant bacterial pathogens has been attributed to biofiltration but had not yet been substantiated. This study investigated the effect of filtration and gut passage in Daphnia spp. on conjugal transfer of resistance genes in Enterococcus faecalis. In vivo conjugation experiments involved a vancomycin-resistant donor strain bearing a plasmid-borne vanA resistance gene, and two vancomycin-susceptible and rifampicin-resistant recipient strains in the presence of Daphnia magna or Daphnia pulex. Results showed successful transfer of the vanA resistance gene from donor to recipient; gene identity was confirmed by PCR and DNA sequencing. There was no significant difference in the number of transconjugants recovered from D. magna and D. pulex. However, transconjugant numbers differed by one order of magnitude between recipient strains. Transconjugant numbers from D. magna were also significantly different between treatments with ingestion of individual phytoplankton species before filtration of bacteria. The highest transfer efficiency calculated from excreted transconjugants was 2.5 × 10(-6). This proof of concept for facilitation of horizontal gene transfer by a filter feeding organism provides evidence that Daphnia can disseminate antibiotic resistant transconjugants in the environment. | 2019 | 31096330 |
| 3581 | 1 | 0.9997 | Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. The human microbiota is suggested to be a reservoir of antibiotic resistance (ABR) genes, which are exchangeable between transient colonizers and residing bacteria. In this study, the transfer of ABR genes from Enterococcus faecalis to Listeria monocytogenes and to commensal bacteria of the human gut microbiota was demonstrated in a colonic fermentation model. In the first fermentation, an E. faecalis donor harboring the marked 50-kb conjugative plasmid pRE25(*) and a chromosomal marker was co-immobilized with L. monocytogenes and infant feces. In this complex environment, the transfer of pRE25(*) to L. monocytogenes was observed. In a second fermentation, only the E. faecalis donor and feces were co-immobilized. Enumeration of pRE25(*) and the donor strain by quantitative PCR revealed an increasing ratio of pRE25(*) to the donor throughout the 16-day fermentation, indicating the transfer of pRE25(*) . An Enterococcus avium transconjugant was isolated, demonstrating that ABR gene transfer to gut commensals occurred. Moreover, pRE25(*) was still functional in both the E. avium and the L. monocytogenes transconjugant and transmittable to other genera in filter mating experiments. Our study reveals that the transfer of a multiresistance plasmid to commensal bacteria in the presence of competing fecal microbiota occurs in a colonic model, suggesting that commensal bacteria contribute to the increasing prevalence of antibiotic-resistant bacteria. | 2011 | 21658089 |
| 3717 | 2 | 0.9997 | Effects of freshwater sponge Ephydatia fluviatilis on conjugative transfer of antimicrobial resistance in Enterococcus faecalis strains in aquatic environments. Filter feeding is a biotic process that brings waterborne bacteria in close contact with each other and may thus support the horizontal transfer of their antimicrobial resistance genes. This laboratory study investigated whether the freshwater sponge Ephydatia fluviatilis supported the transfer of vancomycin resistance between two Enterococcus faecalis strains that we previously demonstrated to exhibit pheromone responsive plasmid conjugation. Microcosm experiments exposed live and dead colonies of laboratory-grown sponges to a vancomycin-resistant donor strain and a rifampicin-resistant recipient strain of Ent. faecalis. Enterococci with both resistance phenotypes were detected on double selection plates. In comparison to controls, abundance of these presumed transconjugants increased significantly in water from sponge microcosms. Homogenized suspensions of sponge cells also yielded presumed transconjugants; however, there was no significant difference between samples from live or dead sponges. Fluorescent in situ hybridization analysis of the sponge cell matrix using species-specific probes revealed the presence of enterococci clusters with cells adjacent to each other. The results demonstrated that sponge colonies can support the horizontal transfer of antimicrobial resistance although the mechanism underlying this process, such as binding of the bacteria to the sponge collagen matrix, has yet to be fully elucidated. | 2020 | 32390273 |
| 4583 | 3 | 0.9997 | High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes. | 2023 | 36706580 |
| 3792 | 4 | 0.9997 | Transfer and expression of a multiple antibiotic resistance plasmid in marine bacteria. Conjugal transfer of a multiresistance plasmid from Pseudomonas fluorescens to halophilic and halotolerant bacteria was studied under in vitro and in situ conditions. Mating conducted in broth as well as on plates yielded a plasmid transfer frequency of as high as 10(-3). Among these two, plate mating facilitated conjugal transfer of plasmid, because the cell-to-cell contact is more in plate mating. When P. fluorescens was incubated in seawater, the organism progressively lost its colony forming activity within 15 days. Microscopic examination revealed the presence of very short rods, indicating that the cells have become viable but nonculturable (VNC). Mating conducted in natural seawater without any added nutrients revealed that the conjugal transfer is influenced by the physical state of the donor and the recipients as well as the availability of nutrients. But a plasmid transfer frequency of 10(-7) was obtained even after the donor cells have become VNC suggesting that the nonculturable state and nutrient deprived condition may not limit plasmid transfer. The results suggest that the terrestrial bacteria entering into the seawaters with antibiotic resistance plasmids may be responsible for the prevalence of resistance genes in the marine environment. | 1998 | 9767716 |
| 3365 | 5 | 0.9997 | Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BACKGROUND: Conjugation plays a major role in the transmission of plasmids encoding antibiotic resistance genes in both clinical and general settings. The conjugation efficiency is influenced by many biotic and abiotic factors, one of which is the taxonomic relatedness between donor and recipient bacteria. A comprehensive overview of the influence of donor-recipient relatedness on conjugation is still lacking, but such an overview is important to quantitatively assess the risk of plasmid transfer and the effect of interventions which limit the spread of antibiotic resistance, and to obtain parameter values for conjugation in mathematical models. Therefore, we performed a meta-analysis on reported conjugation frequencies from Escherichia coli donors to various recipient species. RESULTS: Thirty-two studies reporting 313 conjugation frequencies for liquid broth matings and 270 conjugation frequencies for filter matings were included in our meta-analysis. The reported conjugation frequencies varied over 11 orders of magnitude. Decreasing taxonomic relatedness between donor and recipient bacteria, when adjusted for confounding factors, was associated with a lower conjugation frequency in liquid matings. The mean conjugation frequency for bacteria of the same order, the same class, and other classes was 10, 20, and 789 times lower than the mean conjugation frequency within the same species, respectively. This association between relatedness and conjugation frequency was not found for filter matings. The conjugation frequency was furthermore found to be influenced by temperature in both types of mating experiments, and in addition by plasmid incompatibility group in liquid matings, and by recipient origin and mating time in filter matings. CONCLUSIONS: In our meta-analysis, taxonomic relatedness is limiting conjugation in liquid matings, but not in filter matings, suggesting that taxonomic relatedness is not a limiting factor for conjugation in environments where bacteria are fixed in space. | 2020 | 32456625 |
| 3844 | 6 | 0.9997 | Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h(-1) versus 0.15 h(-1)) led to higher conjugation frequencies (10(-4) versus 10(-6) transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework. | 2022 | 36094214 |
| 7399 | 7 | 0.9997 | Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: Role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota. The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid-mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self-transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4-mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%-97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments. | 2017 | 28742284 |
| 7400 | 8 | 0.9997 | Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria. | 2021 | 33631686 |
| 3422 | 9 | 0.9996 | Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability. | 2016 | 27079455 |
| 3729 | 10 | 0.9996 | Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants. | 2023 | 37244902 |
| 4571 | 11 | 0.9996 | Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood. | 2014 | 24956077 |
| 4612 | 12 | 0.9996 | Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. The food chain is considered one of the main routes of antibiotic resistance diffusion between animal and human population. The resistance to antimicrobial agents among enterococci could be related to the efficient exchange of transferable genetic elements. In this study a sausage model was used to evaluate the persistence of antibiotic resistant enterococci during meat fermentation and to assess horizontal gene transfer among bacteria involved in meat fermentation. Enterococcus faecalis OG1rf harbouring either pCF10 or pAMβ1 plasmid was used as donor strain. The analysis of population dynamics during fermentation confirmed that the human isolate E. faecalis OG1rf was able to colonize the meat ecosystem with similar growth kinetics to that of food origin enterococci and to transfer the mobile genetic elements coding for tetracycline and erythromycin resistances. Transconjugant strains were detected after only two days of fermentation and increased their numbers during ripening even in the absence of selective antibiotic pressure. By means of culture-dependent and -independent molecular techniques, transconjugant strains carrying both tetracycline and erythromycin resistance genes were identified in enterococci, pediococci, lactobacilli and staphylococci groups. Our results suggest that the sausage model provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among food microbiota. | 2012 | 22365347 |
| 4908 | 13 | 0.9996 | Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine. | 2024 | 38191970 |
| 3464 | 14 | 0.9996 | Persistence of Marine Bacterial Plasmid in the House Fly (Musca domestica): Marine-Derived Antimicrobial Resistance Genes Have a Chance of Invading the Human Environment. The house fly is known to be a vector of antibiotic-resistant bacteria (ARB) in animal farms. It is also possible that the house fly contributes to the spread of ARB and antibiotic resistance genes (ARGs) among various environments. We hypothesized that ARB and ARGs present in marine fish and fishery food may gain access to humans via the house fly. We show herein that pAQU1, a marine bacterial ARG-bearing plasmid, persists in the house fly intestine for 5 days after fly ingestion of marine bacteria. In the case of Escherichia coli bearing the same plasmid, the persistence period exceeded 7 days. This interval is sufficient for transmission to human environments, meaning that the house fly is capable of serving as a vector of marine-derived ARGs. Time course monitoring of the house fly intestinal microflora showed that the initial microflora was occupied abundantly with Enterobacteriaceae. Experimentally ingested bacteria dominated the intestinal environment immediately following ingestion; however, after 72 h, the intestinal microflora recovered to resemble that observed at baseline, when diverse genera of Enterobacteriaceae were seen. Given that pAQU1 in marine bacteria and E. coli were detected in fly excrement (defined here as any combination of feces and regurgitated material) at 7 days post-bacterial ingestion, we hypothesize that the house fly may serve as a vector for transmission of ARGs from marine items and fish to humans via contamination with fly excrement. | 2024 | 38191744 |
| 4613 | 15 | 0.9996 | Glycopeptide-resistance transferability from vancomycin-resistant enterococci of human and animal source to Listeria spp. AIMS: The glycopeptide-resistance transferability from vancomycin-resistant enterococci (VRE) of clinical and animal origin to different species of Listeria was investigated. METHODS AND RESULTS: Of 36 matings, performed on membrane filter, the glycopeptide resistance was successfully transferred in six attempts, five with donors of animal origin and only one with donors from clinical source. The acquired glycopeptide resistance in Listeria transconjugants was confirmed by the presence of the conjugative plasmid band and by the amplification of the 732-bp fragment of vanA gene in transferred plasmids. CONCLUSIONS: Despite the lower number of bacteria used in this study, the source of enterococci influenced the outcome of mating. Moreover transferred VanA plasmid induced a different expression in Listeria transconjugants, suggesting that gene expression might be influenced by species affiliation of recipients. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data strengthen the opinion that enterococci are an important source of resistance genes for Listeria via the transfer of movable genetic elements. As these strains are commonly found in the same habitats, a horizontal spread of glycopeptide resistance in Listeria spp. could be possible. | 2004 | 15548299 |
| 3681 | 16 | 0.9996 | A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation. | 2018 | 29484827 |
| 3699 | 17 | 0.9996 | Investigation on gene transfer from genetically modified corn (Zea mays L.) plants to soil bacteria. Knowledge about the prevalence and diversity of antibiotic resistance genes in soil bacteria communities is required to evaluate the possibility and ecological consequences of the transfer of these genes carried by genetically modified (GM) plants to soil bacteria. The neomycin phosphotransferase gene (nptII) conferring resistance to kanamycin and neomycin is one of the antibiotic resistance genes commonly present in GM plants. In this study, we investigated kanamycin-resistant (Km(R)) and neomycin-resistant (Nm(R)) soil bacterial populations in a 3-year field trial using a commercial GM corn (Zea mays L.) carrying the nptII gene and its near isogenic line. The results showed that a portion (2.3 - 15.6 %) of cultivable soil bacteria was naturally resistant to kanamycin or neomycin. However, no significant difference in the population level of Km(R) or Nm(R) soil bacteria was observed between the GM and non-GM corn fields. The nptII gene was not detected in any of the total 3000 Km(R) or Nm(R) isolates screened by PCR. Further, total soil bacterial cells were collected through Nycodenz gradient centrifugation and bacterial community DNA was subjected to PCR. Detection limit was about 500 cells per gram of fresh soil. Our study suggests that the nptII gene was relatively rare in the soil bacterial populations and there was no evidence of gene transfer from a GM corn plant to soil bacteria based on the data from total soil bacterial communities. | 2011 | 21722080 |
| 3843 | 18 | 0.9996 | Bacterivorous Ciliate Tetrahymena pyriformis Facilitates vanA Antibiotic Resistance Gene Transfer in Enterococcus faecalis. Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria remains largely unexplored. This study investigated whether the ciliate Tetrahymena pyriformis facilitates the transfer of antibiotic resistance genes between Enterococcus faecalis strains. Methods: Conjugation assays were conducted under laboratory conditions using a vanA-carrying donor and a rifampicin-resistant recipient at an initial bacterial concentration of 10(9) CFU/mL and ciliate density of 10(5) N/mL. Results: Transconjugant numbers peaked at 2 h when experiments started with recipient bacteria harvested in the exponential growth phase, and at 24 h when bacteria were in the stationary phase. In both cases, vanA gene transfer frequency was highest at 24 h (10(-4)-10(-5) CFU/mL), and the presence of energy sources increased gene transfer frequency by one order of magnitude. Conclusions: These findings suggest that ciliate grazing may contribute to vanA gene transfer in WWTP effluents, potentially facilitating its dissemination among permissive bacteria. Given the ecological and public health risks associated with vanA gene persistence in wastewater systems, understanding protozoan-mediated gene transfer is crucial for mitigating the spread of antibiotic resistance in aquatic environments. | 2025 | 40426515 |
| 3698 | 19 | 0.9996 | Detection and Characterization of Streptomycin Resistance (strA-strB) in a Honeybee Gut Symbiont (Snodgrassella alvi) and the Associated Risk of Antibiotic Resistance Transfer. Use of antibiotics in medicine and farming contributes to increasing numbers of antibiotic-resistant bacteria in diverse environments. The ability of antibiotic resistance genes (ARG) to transfer between bacteria genera contributes to this spread. It is difficult to directly link antibiotic exposure to the spread of ARG in a natural environment where environmental settings and study populations cannot be fully controlled. We used managed honeybees in environments with contrasting streptomycin exposure (USA: high exposure, Norway: low exposure) and mapped the prevalence and spread of transferrable streptomycin resistance genes. We found a high prevalence of strA-strB genes in the USA compared to Norway with 17/90 and 1/90 positive samples, respectively (p < 0.00007). We identified strA-strB genes on a transferrable transposon Tn5393 in the honeybee gut symbiont Snodgrassella alvi. Such transfer of resistance genes increases the risk of the spread to new environments as honeybees are moved to new pollination sites. | 2018 | 29520453 |