# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3708 | 0 | 1.0000 | The effect of amalgam exposure on mercury- and antibiotic-resistant bacteria. Antibiotic resistance genes can be found on the same mobile genetic elements as genes coding for resistance to metals such as mercury (Hg). Amalgam restorations contain ca. 50% Hg and, therefore, it could be expected that exposure to such dental restorative materials may promote Hg resistance and thereby antibiotic resistance. An in vitro biofilm model was used to grow microcosm dental plaques on enamel or amalgam substrata. The number and proportion of Hg-resistant organisms over time were determined by viable counts. Microcosm dental plaques grown in the presence of amalgam had a higher number and proportion of Hg-resistant bacteria than those grown on enamel. The levels of these Hg-resistant bacteria remained elevated for a period of 48 h, however after 72 h the proportions returned to baseline levels. Of the 42 Hg-resistant bacteria isolated, 98% were streptococci, with Streptococcus mitis predominating. A high proportion of the Hg-resistant isolates (71%) were also resistant to a range of antibiotics, with resistance to tetracycline being encountered most frequently. The results of this in vitro study indicate that placement of amalgam restorations may play a role in promoting the levels of Hg- and antibiotic-resistant bacteria present in the oral cavity. | 2007 | 17459664 |
| 5649 | 1 | 0.9997 | Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with and without mercury amalgam fillings. Genes encoding resistance to mercury and to antibiotics are often carried on the same mobile genetic element and so it is possible that mercury-containing dental materials may select for bacteria resistant to mercury and to antibiotics. The main aim of this study was to determine whether the prevalence of Hg-resistant oral bacteria was greater in children with mercury amalgam fillings than in those without. A secondary aim was to determine whether the Hg-resistant isolates were also antibiotic resistant. Bacteria in dental plaque and saliva from 41 children with amalgam fillings and 42 children without such fillings were screened for mercury resistance by cultivation on a HgCl(2)-containing medium. Surviving organisms were identified and their susceptibility to mercury and to several antibiotics was determined. Seventy-eight per cent and 74% of children in the amalgam group and amalgam-free group, respectively, harboured Hg-resistant bacteria; this difference was not statistically significant. Nor was there any significant difference between the groups in terms of the proportions of Hg-resistant bacteria in the oral microflora of the children. Of Hg-resistant bacteria, 88% and 92% from the amalgam group and the amalgam-free group, respectively, were streptococci; 41% and 33% were resistant to at least one antibiotic, most frequently tetracycline. The results of this study show that there was no significant difference between children with amalgam fillings and those without such fillings with regard to the prevalence, or the proportion, of Hg-resistant bacteria in their oral microflora. The study also found that Hg-resistant bacteria were common in children regardless of whether or not they had amalgam fillings and that many of these organisms were also resistant to antibiotics. | 2002 | 12003971 |
| 4571 | 2 | 0.9997 | Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood. | 2014 | 24956077 |
| 4651 | 3 | 0.9997 | Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Several mechanisms are responsible for the ability of microorganisms to tolerate antibiotics, and the incidence of resistance to these compounds within bacterial species has increased since the commercial use of antibiotics became widespread. To establish the extent of and changes in the diversity of antibiotic resistance patterns in natural populations, we determined the MICs of five antibiotics for collections of enteric bacteria isolated from diverse hosts and geographic locations and during periods before and after commercial application of antibiotics began. All of the pre-antibiotic era strains were susceptible to high levels of these antibiotics, whereas 20% of strains from contemporary populations of Escherichia coli and Salmonella enterica displayed high-level resistance to at least one of the antibiotics. In addition to the increase in the frequency of high-level resistance, background levels, conferred by genes providing nonspecific low-level resistance to multiple antibiotics, were significantly higher among contemporary strains. Changes in the incidence and levels of antibiotic resistance are not confined to particular segments of the bacterial population and reflect responses to the increased exposure of bacteria to antimicrobial compounds over the past several decades. | 2000 | 11097921 |
| 4573 | 4 | 0.9997 | High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes. | 2022 | 35953184 |
| 3696 | 5 | 0.9997 | Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Children are very vulnerable to bacterial infections and they are sometimes subject to antimicrobials for healing. The presence of resistance genes may counteract effects of antimicrobials. This work has thereby compared the amount of tetracycline resistance genes, tet(A) and tet(B), between conventional and organic meat-based or vegetable-based baby foods and used the quantification of these genes to assess the presence of tetracycline residues in these samples. Counts of bacteria harboring the tet(A) gene were higher than those containing tet(B), and there was no difference between the organic and the conventional samples. Samples with detectable amounts of tetracycline residues were also positive for the presence of tet genes, and when the presence of the genes was not detected, the samples were also negative for the presence of residues. The percentages of tetracycline residues were higher in organic samples than in conventional ones. It cannot be concluded that organic formulas are safer than conventional ones for the studied parameters. | 2015 | 28231206 |
| 4572 | 6 | 0.9996 | Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains. | 2023 | 36462825 |
| 4111 | 7 | 0.9996 | Antibiotic resistance in oral commensal streptococci from healthy Mexicans and Cubans: resistance prevalence does not mirror antibiotic usage. Antibiotic resistance genes might be maintained by selection pressures different from those which are responsible for initially selecting resistant bacteria. This possibility was suggested from a comparison of oral commensal streptococci isolated from healthy people not taking antibiotics. Resistance frequencies were similar for organisms from Mexico and Cuba despite significant differences in antibiotic usage in these two countries. Resistance to > or = 4 drugs was far more common in Mexico, the only detectable trend that can be related to the higher use of antibiotics in Mexico. If resistance is not uniquely maintained by antibiotics, then other environmental factors must also be at work. These need to be identified if a strategy to control antibiotic resistance is to be successful. | 2002 | 12480100 |
| 3793 | 8 | 0.9996 | Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied. | 2018 | 30254617 |
| 3710 | 9 | 0.9996 | Tolerance to various toxicants by marine bacteria highly resistant to mercury. Bacteria highly resistant to mercury isolated from seawater and sediment samples were tested for growth in the presence of different heavy metals, pesticides, phenol, formaldehyde, formic acid, and trichloroethane to investigate their potential for growth in the presence of a variety of toxic xenobiotics. We hypothesized that bacteria resistant to high concentrations of mercury would have potential capacities to tolerate or possibly degrade a variety of toxic materials and thus would be important in environmental pollution bioremediation. The mercury-resistant bacteria were found to belong to Pseudomonas, Proteus, Xanthomonas, Alteromonas, Aeromonas, and Enterobacteriaceae. All these environmental bacterial strains tolerant to mercury used in this study were capable of growth at a far higher concentration (50 ppm) of mercury than previously reported. Likewise, their ability to grow in the presence of toxic xenobiotics, either singly or in combination, was superior to that of bacteria incapable of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids. | 2003 | 12876655 |
| 3701 | 10 | 0.9996 | Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Copper-derived compounds are often used in olive tree farms. In a previous study, a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline. Significant associations were detected between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline resistance mechanisms. A significant association was also detected between zntA (coding for a Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such genetic traits by exposure to metals. | 2020 | 32756388 |
| 3729 | 11 | 0.9996 | Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants. | 2023 | 37244902 |
| 4650 | 12 | 0.9996 | Co-occurrence of resistance to different antibiotics among aquatic bacteria. BACKGROUND: Antibiotic resistance is not confined to pathogens, but is also widespread in various natural environments. In nature the microbes producing antibiotic compounds have been around for millions of years. Heavy use of antibiotics in medicine and veterinary practice may lead to the accumulation of resistance genes in microbial populations, followed by a rise in multiresistant bacteria. RESULTS: To test the extent of resistance among aquatic bacteria, we have collected 760 isolates resistant to at least one antibiotic. The phylogeny of the isolates covers a wide range of Proteobacteria, Actinobacteria and Bacteroidetes. In order to determine the extent of multiresistance, the isolates were tested on six antibiotics. As the growth rate of the different bacteria was highly variable, the classical medical resistance tests could not be used, and an alternative method considering the full growth curve was developed. In general, the overall resistances to different antibiotics could be explained by random, independent distribution. An exception to this was the resistances against tetracycline and chloramphenicol, which tended to occur in pairs. CONCLUSIONS: We conclude that there is no massive spread of multiresistance determinants in the studied environment, although some specific cases can be found, awaiting for molecular characterization of the resistance mechanisms. | 2012 | 23031674 |
| 3713 | 13 | 0.9996 | Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World's Largest Soda Lake. Arsenic is responsible for water pollution in many places around the world and presents a serious health risk for people. Lake Van is the world's largest soda lake, and there are no studies on seasonal arsenic pollution and arsenic-resistant bacteria. We aimed to determine the amount of arsenic in the lake water and sediment, to isolate arsenic-metabolizing anaerobic bacteria and their identification, and determination of arsenic metabolism. Sampling was done from 7.5 m to represent the four seasons. Metal contents were determined by using ICP-MS. Pure cultures were obtained using the Hungate technique. Growth characteristics of the strains were determined at different conditions as well as at arsenate and arsenite concentrations. Molecular studies were also carried out for various resistance genes. Our results showed that Lake Van's total arsenic amount changes seasonally. As a result of 16S rRNA sequencing, it was determined that the isolates were members of 8 genera with arsC resistance genes. In conclusion, to sustain water resources, it is necessary to prevent chemical and microorganism-based pollution. It is thought that the arsenic-resistant bacteria obtained as a result of this study will contribute to the solution of environmental arsenic pollution problems, as they are the first data and provide the necessary basic data for the bioremediation studies of arsenic from contaminated environmental habitats. At the same time, the first data that will contribute to the creation of the seasonal arsenic map of Lake Van are obtained. | 2022 | 36431035 |
| 3704 | 14 | 0.9996 | Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms. | 2009 | 18677528 |
| 7406 | 15 | 0.9996 | Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance. | 2017 | 27822686 |
| 7410 | 16 | 0.9996 | The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. The use of antibiotics at subtherapeutic concentrations for agricultural applications is believed to be an important factor in the proliferation of antibiotic-resistant bacteria. The goal of this study was to determine if the application of manure onto agricultural land would result in the proliferation of antibiotic resistance among soil bacteria. Chlortetracycline-resistant bacteria were enumerated and characterized from soils exposed to the manure of animals fed subtherapeutic concentrations of antibiotics and compared to the chlortetracycline-resistant bacteria from soils at farms with restricted antibiotic use (dairy farms) and from non-agricultural soils. No significant differences were observed at nine different study sites with respect to the numbers and types of cultivated chlortetracycline-resistant bacteria. Genes encoding for tetracycline resistance were rarely detected in the resistant bacteria from these sites. In contrast, soils collected from a tenth farm, which allowed manure to indiscriminately accumulate outside the animal pen, had significantly higher chlortetracycline-resistance levels. These resistant bacteria frequently harbored one of 14 different genes encoding for tetracycline resistance, many of which (especially tet(A) and tet(L)) were detected in numerous different bacterial species. Subsequent bacterial enumerations at this site, following the cessation of farming activity, suggested that this farm remained a hotspot for antibiotic resistance. In conclusion, we speculate that excessive application of animal manure leads to the spread of resistance to soil bacteria (potentially by lateral gene transfer), which then serve as persistent reservoir of antibiotic resistance. | 2007 | 18043630 |
| 4128 | 17 | 0.9996 | Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin). Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers). Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria. | 2014 | 25317117 |
| 4583 | 18 | 0.9996 | High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes. | 2023 | 36706580 |
| 4570 | 19 | 0.9996 | Detection of sulfonamide resistance genes via in situ PCR-FISH. Due to the rising use of antibiotics and as a consequence of their concentration in the environment an increasing number of antibiotic resistant bacteria is observed. The phenomenon has a hazardous impact on human and animal life. Sulfamethoxazole is one of the sulfonamides commonly detected in surface waters and soil. The aim of the study was to detect sulfamethoxazole resistance genes in activated sludge biocenosis by use of in situ PCR and/or hybridization. So far no FISH probes for the detection of SMX resistance genes have been described in the literature. We have tested common PCR primers used for SMX resistance genes detection as FISH probes as well as a combination of in situ PCR and FISH. Despite the presence of SMX resistance genes in activated sludge confirmed via traditional PCR, the detection of the genes via microscopic visualization failed. | 2014 | 25115110 |