Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
370001.0000Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.201627210560
370310.9998Antibiotic resistance patterns of metal-tolerant bacteria isolated from an estuary. Estuarine bacteria isolated on metal-containing media were also found to be antibiotic resistant; ampicillin and chloramphenicol were the antibiotics to which resistance was most common. Patterns of antibiotic resistance were found associated with a variety of taxa.1977921251
529020.9998Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. OBJECTIVES: The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. MATERIALS AND METHODS: The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. RESULTS: Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. CONCLUSIONS: The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria.201728732786
347230.9998Selective pressure governs the composition, antibiotic, and heavy metal resistance profiles of Aeromonas spp. isolated from Ba River in Northwest China. The selective pressure of the living surroundings is a key factor in the development of resistance profiles in pathogenic bacteria such as Aeromonas spp. In this study, Aeromonas species were isolated from the Ba River, and their composition, resistance profiles to antibiotics, and heavy metals (HMs) were investigated. The discovery revealed that selective pressure altered the diversity of Aeromonas spp., with Aeromonas veronii being more adaptable to contaminated waters. Long-term exposure to antibiotics or HMs exerts persistent selective pressure on Aeromonas species, leading to the increase in multiple antibiotic resistance (MAR) index and multidrug-resistant (MDR) strains. Furthermore, HMs could drive the co-selection of antibiotic resistance via co-resistance or cross-resistance. bla(TEM), bla(SHV), bla(CTX-M), sul1, czcA, mexA, and mexF were detected at high frequencies in Aeromonas species. Among these resistance phenotypes conferred genes, bla(TEM) may be intrinsic in the genome of Aeromonas spp., while mexA and mexF may have been acquired from surrounding environments owing to selective pressure. Resistance genes evolved as a consequence of selective pressure and have been shown to be positively correlated with their prevalence. Our study suggests that the selective pressure of living surroundings significantly contributes to the composition and resistance profiles of Aeromonas spp. in the riverine ecosystem.202235657546
337040.9998Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.201323247295
337150.9998Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens.201728238372
313860.9998Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. Antibiotic resistance genes (ARGs) that distributed in antibiotic resistant bacteria (ARBs) are widespread in aquaculture and have great threats to the aquatic organism as well as to human. However, our understanding about the risk of ARGs to the health of aquatic organism is still limited. In the present study, we got a deep insight into the diversity of ARGs in the intestinal bacteria of shrimp by culture-dependent and independent approaches. Results of the PCR-based detection and culture-dependent analysis indicated that the tetracycline, sulfadiazine, quinolone and erythromycin resistance genes were prevalent in the commercial shrimps that bought from aquatic markets or supermarket. The culture-independent plasmid metagenomic analysis identified 62 different ARGs, which were classified into 21 types, with abundances ranging from 13 to 1418 ppm. The analysis suggested that most of the ARGs come from the plasmids originating from Vibrio (accounted for 2.8-51%) and Aeromonas (accounted for 16-55%), and the Vibrio group was concluded to be the main bacterial pathogen that probably resulted in the shrimp disease. Accordingly, the plasmid metagenomic that focuses on the mobile genetic elements has great potential on the identification of ARGs in complex environments.201930735978
370170.9998Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Copper-derived compounds are often used in olive tree farms. In a previous study, a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline. Significant associations were detected between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline resistance mechanisms. A significant association was also detected between zntA (coding for a Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such genetic traits by exposure to metals.202032756388
370280.9998Antibiotic and metal resistance of Stenotrophomonas maltophilia isolates from Eboling permafrost of the Tibetan Plateau. Whole-genome sequencing of pathogenic bacteria Stenotrophomonas maltophilia from a less polluted environment of permafrost can help understand the intrinsic resistome of both antibiotics and metals. This study aimed to examine the maximum minimum inhibitory concentration (MIC) of both antibiotics and metals, as well as antibiotic resistance genes and metal resistance genes annotated from whole-genome sequences. The permafrost S. maltophilia was sensitive to ciprofloxacin, tetracycline, streptomycin, and bacitracin, and resistant to chloramphenicol, trimethoprim-sulfamethoxazole, erythromycin, Zn(2+), Ni(2+), Cu(2+), and Cr(6+), with a lower maximum MIC, compared with clinical S. maltophilia. The former strain belonged to the lower antibiotic resistance gene (ARG) and metal resistance gene (MRG) clusters compared with the latter ones. The permafrost strain contained no or only one kind of ARG or MRG on a single genomic island, which explained the aforementioned lower maximum MIC and less diversity of ARGs or MRGs. The result indicated that the co-occurrence of antibiotic and metal resistance was due to a certain innate ability of S. maltophilia. The continuous human use of antibiotics or metals induced selective pressure, resulting in higher MIC and more diverse ARGs and MRGs in human-impacted environments.202336097311
370590.9997Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. The occurrence of 22 bacterial human virulence genes (encoding toxins, adhesins, secretion systems, regulators of virulence, inflammatory mediators, and bacterial resistance) in beech wood soil, roadside soil, organic agricultural soil, and freshwater biofilm was investigated by nested PCR. The presence of clinically relevant bacterial groups known to possess virulence genes was tested by PCR of 16S and 23S rRNA genes. For each of the virulence genes detected in the environments, sequencing and NCBI BLAST analysis confirmed the identity of the PCR products. The virulence genes showed widespread environmental occurrence, as 17 different genes were observed. Sixteen genes were detected in beech wood soil, and 14 were detected in roadside and organic agricultural soils, while 11 were detected in the freshwater biofilm. All types of virulence traits were represented in all environments; however, the frequency at which they were detected was variable. A principal-component analysis suggested that several factors influenced the presence of the virulence genes; however, their distribution was most likely related to the level of contamination by polycyclic aromatic hydrocarbons and pH. The occurrence of the virulence genes in the environments generally did not appear to be the result of the presence of clinically relevant bacteria, indicating an environmental origin of the virulence genes. The widespread occurrence of the virulence traits and the high degree of sequence conservation between the environmental and clinical sequences suggest that soil and freshwater environments may constitute reservoirs of virulence determinants normally associated with human disease.201323835169
3140100.9997Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and bla(TEM-157) and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.202236371907
3360110.9997Gentamicin resistance genes in environmental bacteria: prevalence and transfer. A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gm(r)) genes in different non-clinical environments has been performed. We were interested to find out whether Gm(r) genes described from clinical isolates can be detected in different environmental habitats and whether hot spots can be identified. Furthermore, this study aimed to evaluate the impact of selective pressure on the abundance and mobility of resistance genes. The study included samples from soils, rhizospheres, piggery manure, faeces from cattle, laying and broiler chickens, municipal and hospital sewage water, and coastal water. Six clusters of genes coding for Gm-modifying enzymes (aac(3)-I, aac(3)-II/VI, aac(3)-III/IV, aac(6')-II/Ib, ant(2'')-I, aph(2'')-I) were identified based on a database comparison and primer systems for each gene cluster were developed. Gm-resistant bacteria isolated from the different environments had a different taxonomic composition. In only 34 of 207 isolates, mainly originating from sewage, faeces and coastal water polluted with wastewater, were known Gm(r) genes corresponding to five of the six clusters detected. The strains belonged to genera in which the genes had previously been detected (Enterobacteriaceae, Pseudomonas, Acinetobacter) but also to phylogenetically distant bacteria, such as members of the CFB group, alpha- and beta-Proteobacteria. Gm(r) genes located on mobile genetic elements (MGE) could be captured in exogenous isolations into recipients belonging to alpha-, beta- and gamma-Proteobacteria from all environments except for soil. A high proportion of the MGE, conferring Gm resistance isolated from sewage, were identified as IncPbeta plasmids. Molecular detection of Gm(r) genes, and broad host range plasmid-specific sequences (IncP-1, IncN, IncW and IncQ) in environmental DNA indicated a habitat-specific dissemination. A high abundance and diversity of Gm(r) genes could be shown for samples from faeces (broilers, layers, cattle), from sewage, from seawater, collected close to a wastewater outflow, and from piggery manure. In the latter samples all six clusters of Gm(r) genes could be detected. The different kinds of selective pressure studied here seemed to enhance the abundance of MGE, while an effect on Gm(r) genes was not obvious.200219709289
3401120.9997Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. Pseudomonas aeruginosa is an opportunistic pathogen, which can have several virulence factors that confer on it the ability to cause severe, acute and chronic infections. Thus, the simultaneous occurrence of resistance to antibiotics and heavy metals associated with the presence of virulence genes is a potential threat to human health and environmental balance. This study aimed to investigate the resistance profile to heavy metals and the correlation of this phenotype of resistance to antimicrobials and to investigate the pathogenic potential of 46 P. aeruginosa isolates obtained from the soil of five Brazilian regions. The bacteria were evaluating for antimicrobial and heavy metal resistance, as well as the presence of plasmids and virulence genes. The isolates showed resistance to four different antibiotics and the majority (n = 44) had resistance to aztreonam or ticarcillin, furthermore, 32 isolates showed concomitant resistance to both of these antibiotics. A high prevalence of virulence genes was found, which highlights the pathogenic potential of the studied environmental isolates. Moreover, a high frequency of heavy metal resistance genes was also detected, however, the phenotypic results indicated that other genes and/or mechanisms should be related to heavy metal resistance.201627197940
3394130.9997Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles.202031930390
3373140.9997Evidence of Increased Antibiotic Resistance in Phylogenetically-Diverse Aeromonas Isolates from Semi-Intensive Fish Ponds Treated with Antibiotics. The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance.201627965628
2803150.9997Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system. Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.201729160218
5289160.9997Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.201627065407
3399170.9997Antibiotic-resistance and virulence genes in Enterococcus isolated from tropical recreational waters. The prevalence of enterococci harboring tetracycline- and vancomycin-resistance genes, as well as the enterococcal surface protein (esp) has mostly been determined in clinical settings, but their prevalence in tropical recreational waters remains largely unknown. The present study determined the prevalence of tetM (tetracycline-resistance), vanA and vanB (vancomycin-resistance) in the bacterial and viral fractions, enterococci and their induced phages isolated from tropical recreational marine and fresh waters, dry and wet sands. Since lysogenic phages can act as vectors for antibiotic-resistance and virulence factors, the prevalence of the mentioned genes, as well as that of an integrase-encoding gene (int) specific for Enterococcus faecalis phages was determined. Up to 60 and 54% of the bacterial fractions and enterococci, respectively, harbored at least one of the tested genes suggesting that bacteria in tropical environments may be reservoirs of antibiotic-resistance and virulence genes. int was detected in the viral fractions and in one Enterococcus isolate after induction. This study presents the opportunity to determine if the presence of bacteria harboring antibiotic-resistance and virulence genes in tropical recreational waters represents a threat to public health.201323981868
3471180.9997The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. The emergence of clinically relevant β-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of β-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu(2+) and Zn(2+)) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu(2+) and Zn(2+)) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.202133035873
3694190.9997Salmon aquaculture and antimicrobial resistance in the marine environment. Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.201222905164