# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3680 | 0 | 1.0000 | Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment. | 2018 | 30459724 |
| 3681 | 1 | 0.9999 | A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation. | 2018 | 29484827 |
| 7395 | 2 | 0.9999 | Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The impact of human activity on the selection for antibiotic resistance in the environment is largely unknown, although considerable amounts of antibiotics are introduced through domestic wastewater and farm animal waste. Selection for resistance may occur by exposure to antibiotic residues or by co-selection for mobile genetic elements (MGEs) which carry genes of varying activity. Class 1 integrons are genetic elements that carry antibiotic and quaternary ammonium compound (QAC) resistance genes that confer resistance to detergents and biocides. This study aimed to investigate the prevalence and diversity of class 1 integron and integron-associated QAC resistance genes in bacteria associated with industrial waste, sewage sludge and pig slurry. We show that prevalence of class 1 integrons is higher in bacteria exposed to detergents and/or antibiotic residues, specifically in sewage sludge and pig slurry compared with agricultural soils to which these waste products are amended. We also show that QAC resistance genes are more prevalent in the presence of detergents. Studies of class 1 integron prevalence in sewage sludge amended soil showed measurable differences compared with controls. Insertion sequence elements were discovered in integrons from QAC contaminated sediment, acting as powerful promoters likely to upregulate cassette gene expression. On the basis of this data, >1 × 10(19) bacteria carrying class 1 integrons enter the United Kingdom environment by disposal of sewage sludge each year. | 2011 | 21368907 |
| 7396 | 3 | 0.9999 | Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. River sediments are regarded as hot spots of bacterial density and activity. Moreover, high bacterial densities and biofilm formation are known to promote horizontal gene transfer, the latter playing a vital role in the spread of antimicrobial resistance. It can thus be hypothesized that sediments act as a reservoir of antibiotic resistant bacteria (ARB) and resistance genes (ARGs), particularly in rivers receiving microbes and drug residues from treated sewage. We analyzed the phenotypic susceptibility of 782 Escherichia coli isolates against 24 antimicrobials and we measured the relative abundances of five ARGs in water and sediment extracts of a small stream. We did not find evidence for a general increase in the proportion of resistant E. coli isolated from sediments as compared to those found in stream water. For most antimicrobials, the likelihood of detecting a resistant isolate was similar in water and sediment or it was even lower in the latter compartment. The mean relative abundance of ARGs was moderately increased in sediment-borne samples. Generally, absolute abundances of resistant cells and resistance genes in the sediment exceeded the pelagic level owing to higher bacterial densities. The river bottom thus represents a reservoir of ARB and ARGs that can be mobilized by resuspension. | 2018 | 29982428 |
| 7324 | 4 | 0.9999 | Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge. | 2020 | 32140141 |
| 7397 | 5 | 0.9999 | Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones. | 2016 | 26978717 |
| 3683 | 6 | 0.9999 | Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship. | 2018 | 30043816 |
| 7105 | 7 | 0.9999 | Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. The transfer of antibiotic resistance genes (ARGs) in the environment is a threat to both human and animal health. However, the contribution of bacteriophages to the dissemination of resistance genes via transduction is rarely explored. In this study, we screened pig feces from three commercial farms in China for 32 clinically relevant ARG types to assess the presence of the ARG population in bacteria and bacteriophage and further to estimate the contribution of bacteriophages to the dissemination of antibiotic resistance. We found that bacteriophage DNA contained 35.5% of the target ARG types and sul1, bla(TEM) and ermB were found in 100% of the phage DNA samples. The most abundant genes in the bacterial population were ermB and fexA whereas ermB was the most abundant in bacteriophage. In contrast, floR was the least abundant ARG in both populations. Also, the ratio index of the abundance of ARGs in bacteriophage and bacteria was firstly used in this study as an estimator of bacteriophage ability to transmit ARGs. The ratio for qnrA was the greatest (about 10(-1)) and differed from the most abundant bacteriophage ARG ermB. In addition, fexA had the lowest ratio value (about 10(-6)) and not floR. These results illustrate that ARGs abundance and detection rates used alone probably be not suitable for comprehensively judging the contribution of bacteriophage to the dissemination of antibiotic resistance. A more suitable model is the application of three indices; occurrence rate, absolute abundance in bacteriophage and the ratio value as warning and monitoring tools for environmental ARG assessments in bacteriophages. | 2018 | 29573711 |
| 7406 | 8 | 0.9999 | Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance. | 2017 | 27822686 |
| 3677 | 9 | 0.9999 | Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. | 2014 | 24637153 |
| 3339 | 10 | 0.9999 | Examining the taxonomic distribution of tetracycline resistance in a wastewater plant. Microbial communities serve as reservoirs of antibiotic resistance genes (ARGs) and facilitate the dissemination of these genes to bacteria that infect humans. Relatively little is known about the taxonomic distribution of bacteria harboring ARGs in these reservoirs and the avenues of transmission due to the technical hurdles associated with characterizing the contents of complex microbial populations and the assignment of genes to particular genomes. Focusing on the array of tetracycline resistance (Tc(r)) genes in the primary and secondary phases of wastewater treatment, 17 of the 22 assayed Tc(r) genes were detected in at least one sample. We then applied emulsion, paired isolation, and concatenation PCR (epicPCR) to link tetracycline resistance genes to specific bacterial hosts. Whereas Tc(r) genes tend to vary in their distributions among bacterial taxa according to their modes of action, there were numerous instances in which a particular Tc(r) gene was associated with a host that was distantly related to all other bacteria bearing the same gene, including several hosts not previously identified. Tc(r) genes are far less host-restricted than previously assumed, indicating that complex microbial communities serve as settings where ARGs are spread among divergent bacterial phyla. | 2024 | 38317688 |
| 3459 | 11 | 0.9999 | Diversity of antibiotic resistance gene variants at subsequent stages of the wastewater treatment process revealed by a metagenomic analysis of PCR amplicons. Wastewater treatment plants have been recognised as point sources of various antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) which are considered recently emerging biological contaminants. So far, culture-based and molecular-based methods have been successfully applied to monitor antimicrobial resistance (AMR) in WWTPs. However, the methods applied do not permit the comprehensive identification of the true diversity of ARGs. In this study we applied next-generation sequencing for a metagenomic analysis of PCR amplicons of ARGs from the subsequent stages of the analysed WWTP. The presence of 14 genes conferring resistance to different antibiotic families was screened by PCR. In the next step, three genes were selected for detailed analysis of changes of the profile of ARG variants along the process. A relative abundance of 79 variants was analysed. The highest diversity was revealed in the ermF gene, with 52 variants. The relative abundance of some variants changed along the purification process, and some ARG variants might be present in novel hosts for which they were currently unassigned. Additionally, we identified a pool of novel ARG variants present in the studied WWTP. Overall, the results obtained indicated that the applied method is sufficient for analysing ARG variant diversity. | 2023 | 38274111 |
| 3676 | 12 | 0.9999 | Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 10(3) to 10(5) orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock. | 2018 | 29469609 |
| 3853 | 13 | 0.9999 | Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome. | 2020 | 32302839 |
| 7400 | 14 | 0.9999 | Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria. | 2021 | 33631686 |
| 7414 | 15 | 0.9999 | Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption. | 2022 | 34864022 |
| 7407 | 16 | 0.9999 | Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. BACKGROUND: Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS: The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS: Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics. | 2024 | 39523335 |
| 3684 | 17 | 0.9999 | Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well. | 2016 | 26938321 |
| 3456 | 18 | 0.9999 | Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (bla(TEM), bla(CTX-M-1) group, bla(CTX-M-9) group, bla(OXA-48), bla(VIM), mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered. | 2018 | 29567433 |
| 7429 | 19 | 0.9999 | Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment. | 2019 | 31301473 |