# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3667 | 0 | 1.0000 | An Overview on Streptococcus bovis/Streptococcus equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Streptococcus bovis/Streptococcus equinus complex (SBSEC), a non-enterococcal group D Streptococcus spp. complex, has been described as commensal bacteria in humans and animals, with a fecal carriage rate in humans varying from 5% to over 60%. Among streptococci, SBSEC isolates represent the most antibiotic-resistant species-with variable resistance rates reported for clindamycin, erythromycin, tetracycline, and levofloxacin-and might act as a reservoir of multiple acquired genes. Moreover, reduced susceptibility to penicillin and vancomycin associated with mobile genetic elements have also been detected, although rarely. Since the association of SBSEC bacteremia and colon lesions, infective endocarditis and hepatobiliary diseases has been established, particularly in elderly individuals, an accurate identification of SBSEC isolates to the species and subspecies level, as well as the evaluation of antibiotic resistance, are needed. In this paper, we reviewed the major methods used to identify SBSEC isolates and the antimicrobial resistance rates reported in the scientific literature among SBSEC species. | 2019 | 30678042 |
| 3666 | 1 | 0.9997 | Diversity and Antimicrobial Resistance in the Streptococcus bovis/Streptococcus equinus Complex (SBSEC) Isolated from Korean Domestic Ruminants. S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry. | 2021 | 33406675 |
| 4597 | 2 | 0.9997 | Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Enterococcus faecium and Enterococcus faecalis belong to the gastrointestinal flora of humans and animals. Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The use of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin- and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes or resistant bacteria from food animals to humans. The genes encoding resistance to vancomycin, gentamicin, and quinupristin/dalfopristin have been found in E. faecium of human and animal origin; meanwhile, certain clones of E. faecium are found more frequently in samples from human patients, while other clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin- and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance in enterococci from humans and animals is essential to follow trends and detect emerging resistance. | 2010 | 20578915 |
| 4753 | 3 | 0.9997 | Vancomycin-resistant enterococci. Enterococci, a part of normal gut flora, are not particularly pathogenic organisms in humans. For example, they do not cause respiratory tract infections. The most frequent enterococcal infections are urinary tract infections. Despite their lack of pathogenicity, enterococci have emerged as significant nosocomial pathogens in the United States and elsewhere. Enterococci are formidable pathogens because of their resistance to antimicrobial agents. Enterococci are intrinsically resistant to beta-lactam agents and aminoglycosides and were the first bacteria to acquire vancomycin resistance. Infection control measures have been far from effective at preventing the dissemination of vancomycin-resistant enterococci in the hospital. Therapy for infections due to vancomycin-resistant enterococci presents real challenges. Most isolates remain susceptible to nitrofurantoin, but this agent is useful only for urinary tract infections. The greatest threat posed by vancomycin-resistant enterococci is the potential to transfer their resistance genes to more pathogenic gram-positive bacteria, which could produce truly frightening pathogens. | 1998 | 9597252 |
| 4798 | 4 | 0.9997 | Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA. | 2008 | 18811239 |
| 4751 | 5 | 0.9997 | Emerging antibiotic-resistant bacteria. Their treatment in total joint arthroplasty. Successful treatment of an infected total joint arthroplasty can be achieved in approximately 90% of cases. This outcome may be jeopardized by the emergence of antibiotic resistance in bacteria common to these infections. Staphylococci are the most frequently isolated bacteria in total joint infections, and the prevalence of antibiotic resistance in these organisms among all nosocomial and community-acquired infections has been increasing. As many as 46.7% of Staphylococcus aureus strains and 85.7% of coagulase-negative staphylococci strains are methicillin-resistant. Enterococci also are commonly isolated from infected total joint arthroplasties. The prevalence of vancomycin-resistant enterococci among all enterococci strains is estimated at 23%. As the prevalence of these resistant bacteria continues to increase among all infections, it is anticipated that they will be encountered more regularly in total joint infections. Knowledge of the mechanisms of resistance of these bacteria and currently available and newly developed antimicrobials is key to preventing the expansion of antimicrobial resistance and ensuring the future successful treatment of total joint infections. | 1999 | 10611866 |
| 4596 | 6 | 0.9997 | Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. OBJECTIVES: This review summarizes the literature on the role of virulence and antimicrobial resistance genes of Staphylococcus aureus in bovine mastitis, focusing on the association between these characteristics and their implications for public and animal health. CONCLUSIONS: There is the possibility of antimicrobial resistance gene exchange among different bacteria, which is of serious concern in livestock husbandry, as well as in the treatment of human staphylococcal infections. | 2020 | 32603906 |
| 4793 | 7 | 0.9997 | Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism. | 2020 | 33402829 |
| 4593 | 8 | 0.9997 | Origin, evolution and dissemination of antibiotic resistance genes. Comparison of resistance genes from different sources support the hypothesis that the antibiotic-producing microorganisms are the source of resistant determinants present in clinical isolates. There is also evidence that Gram-positive cocci (staphylococci and streptococci) can serve as a reservoir of resistance genes for Gram-negative bacteria. | 1987 | 2856426 |
| 4752 | 9 | 0.9997 | Antibiotic resistance in gram-positive bacteria: epidemiological aspects. The emergence and spread of antibiotic resistance in gram-positive bacterial pathogens has become an increasing problem. There has been a dramatic increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. This is mainly due to the clonal dissemination of certain epidemic multiply-resistant strains, for example, those of MRSA and S. pneumoniae, as well as to the spread of resistance genes as exemplified by those causing glycopeptide resistance in enterococci. | 1999 | 10511391 |
| 4792 | 10 | 0.9997 | Antibiotic resistance in the staphylococci. There has been much interest in the media, international as well as national, on the potential for the development of "superbugs' by which is usually meant pathogenic bacteria resistant to all available antibiotics. Two of the genera most often thought to fall into this category are the staphylococci (MRSA or Methicillin Resistant Staphylococcus aureus) and the enterococci (VRE or Vancomycin Resistant Enterococci) and although this article concentrates on the staphylococci the two share much in the way of transmissible genes. | 1997 | 9161125 |
| 4598 | 11 | 0.9996 | Enterococci of animal origin and their significance for public health. Enterococci are commensal bacteria in the intestines of humans and animals, but also cause infections in humans. Most often, Enterococcus faecium isolates from clinical outbreaks belong to different types than E. faecium from animals, food, and humans in the community. The same variants of the vanA gene cluster (Tn1546) encoding vancomycin resistance can be detected in enterococci of both human and animal origin. This could indicate horizontal transfer of Tn1546 between enterococci of different origin. E. faecium isolates of animal origin might not constitute a human hazard in themselves, but they could act as donors of antimicrobial resistance genes for other pathogenic enterococci. Enterococcus faecalis of animal origin seems to be a human hazard, as the same types can be detected in E. faecalis from animals, meat, faecal samples from humans in the community, and patients with bloodstream infections. | 2012 | 22487203 |
| 4754 | 12 | 0.9996 | Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria. | 2007 | 17659211 |
| 4594 | 13 | 0.9996 | Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci. | 2018 | 30253132 |
| 4600 | 14 | 0.9996 | The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. The Staphylococcus sciuri species group includes five species that are most often presented as commensal animal-associated bacteria. The species of this group are Staphylococcus sciuri (with three subspecies), Staphylococcus lentus, Staphylococcus vitulinus, Staphylococcus fleurettii and Staphylococcus stepanovicii. Members of these group are commonly found in a broad range of habitats including animals, humans and the environment. However, those species have been isolated also from infections, both in veterinary and human medicine. Members of this group have been shown to be pathogenic, though infections caused by these species are infrequent. Furthermore, members of the S. sciuri species group have also been found to carry multiple virulence and resistance genes. Indeed, genes implicated in biofilm formation or coding for toxins responsible of toxic shock syndrome and multi-resistance, similar to those carried by Staphylococcus aureus, were detected. This group may thereby represent a reservoir for other bacteria. Despite its recognized abundance as commensal bacteria and its possible role as reservoir of virulence and resistance genes for other staphylococci, the S. sciuri species group is often considered harmless and, as such, not as well documented as, for example, S. aureus. More investigation into the role of the S. sciuri species group as commensal and pathogenic bacteria is required to fully assess its medical and veterinary importance. | 2014 | 24629775 |
| 3951 | 15 | 0.9996 | Diversity and genetic lineages of environmental staphylococci: a surface water overview. Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria. | 2020 | 32949464 |
| 4595 | 16 | 0.9996 | Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids. Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen. | 2016 | 27190144 |
| 4799 | 17 | 0.9996 | Glycopeptide-resistant enterococci: a decade of experience. Since their first description in 1988, glycopeptide-resistant enterococci (GRE) have emerged as a significant cause of nosocomial infections and colonisations, particularly in Europe and the USA. Two major genetically distinct forms of acquired resistance, designated VanA and VanB, are recognised, although intrinsic resistance occurs in some enterococcal species (VanC) and a third form of acquired resistance (VanD) has been reported recently. The biochemical basis of each resistance mechanism is similar; the resistant enterococci produce modified peptidoglycan precursors that show decreased binding affinity for glycopeptide antibiotics. Although VanA resistance is detected readily in the clinical laboratory, the variable levels of vancomycin resistance associated with the other phenotypes makes detection less reliable. Under-reporting of VanB resistance as a result of a lower detection rate may account, in part, for the difference in the numbers of enterococci displaying VanA and VanB resistance referred to the PHLS Laboratory of Hospital Infection. Since 1987, GRE have been referred from >1100 patients in almost 100 hospitals, but 88% of these isolates displayed the VanA phenotype. It is possible that, in addition to the problems of detection, there may be a real difference in the prevalence of VanA and VanB resistance reflecting different epidemiologies. Our present understanding of the genetic and biochemical basis of these acquired forms of glycopeptide resistance has been gained mainly in the last 5 years. However, these relatively new enterococcal resistances appear still to be evolving; there have now been reports of transferable VanB resistance associated with either large chromosomally borne transposons or plasmids, genetic linkage of glycopeptide resistance and genes conferring high-level resistance to aminoglycoside antibiotics, epidemic strains of glycopeptide-resistant Enterococcus faecium isolated from multiple patients in numerous hospitals, and of glycopeptide dependence (mutant enterococci that actually require these agents for growth). The gene clusters responsible for VanA and VanB resistance are located on transposable elements, and both transposition and plasmid transfer have resulted in the dissemination of these resistance genes into diverse strains of several species of enterococci. Despite extensive research, knowledge of the origins of these resistances remains poor. There is little homology between the resistance genes and DNA from either intrinsically resistant gram-positive genera or from the soil bacteria that produce glycopeptides, which argues against direct transfer to enterococci from these sources. However, recent data suggest a more distant, evolutionary relationship with genes found in glycopeptide-producing bacteria. In Europe, VanA resistance occurs in enterococci isolated in the community, from sewage, animal faeces and raw meat. This reservoir suggests that VanA may not have evolved in hospitals, and its existence has been attributed, controversially, to use of the glycopeptide avoparcin as a growth promoter, especially in pigs and poultry. However, as avoparcin has never been licensed for use in the USA and, to date, VanB resistance has not been confirmed in non-human enterococci, it is clear that the epidemiology of acquired glycopeptide resistance in enterococci is complex, with many factors contributing to its evolution and global dissemination. | 1998 | 9788808 |
| 4796 | 18 | 0.9996 | The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae. | 1998 | 9684651 |
| 3945 | 19 | 0.9996 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |