Antibiotic susceptibility of Bifidobacterium thermophilum and Bifidobacterium pseudolongum isolates from animal sources. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
366201.0000Antibiotic susceptibility of Bifidobacterium thermophilum and Bifidobacterium pseudolongum isolates from animal sources. The widespread use of antimicrobial substances has led to resistant populations of microorganisms in several ecosystems. In animal husbandry, the application of antibiotics has contributed to resistance development in pathogenic and commensal bacteria. These strains or their resistance genes can be spread along several ecological routes, including the food chain. Antibiotic resistance is important in terms of the safety of industrial strains, such as probiotics for food and feed. Bifidobacterium thermophilum and Bifidobacterium pseudolongum are known to comprise the major part of the bifidobacterial microbiota in the gut and feces of cattle and pigs. In this study, the antimicrobial susceptibility in bifidobacterial isolates of these species was investigated. Isolates from the beef and pork production chain were identified and typed to strain level, and the antimicrobial susceptibility level was tested to a set of antibiotics. Isolates with low susceptibility levels were screened by PCR for already described resistance genes. Strains atypically resistant to clindamycin, erythromycin, and tetracycline were determined. The resistance genes tet(O), tet(W), and erm(X) were detected in the bifidobacterial species that were examined.200717265870
360610.9998Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. The widespread use of antibiotics for medical and veterinary purposes has led to an increase of microbial resistance. The antibiotic resistance of pathogenic bacteria has been studied extensively. However, antibiotics are not only selective for pathogens: they also affect all members of the gut microbiota. These microorganisms may constitute a reservoir of genes carrying resistance to specific antibiotics. This study was designed to characterize the gut microbiota with regard to the presence of genes encoding tetracycline resistance proteins (tet) in the gut of healthy exclusively breast-fed infants and their mothers. For this purpose we determined the prevalence of genes encoding ribosomal protection proteins (tet M, tet W, tet O, tet S, tet T and tet B) by PCR and characterized the gut microbiota by FISH in stools of infants and their mothers. The gene tet M was found in all the breast-fed infants and their mothers. tet O was found in all of the mothers' samples, whilst only 35% of the infants harboured this gene. tet W was less frequently found (85% of the mothers and 13% of the infants). None of the other genes analysed was found in any sample. Our results suggest that genes carrying antibiotic resistance are common in the environment, as even healthy breast-fed infants with no direct or indirect previous exposure to antibiotics harbour these genes.200616965348
467820.9998Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.202134277757
392030.9997Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Antibiotic Resistance is a growing concern for public health and global economy. Lactic acid bacteria (LAB) involved in the production of dairy products and commonly present in the agro-zootechnical environment can act as reservoirs of antibiotic resistance genes, acquiring or transferring them to other microorganisms. The review focuses on LAB group of dairy origin (Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus and Weissella) and Bifidobacterium genus, considering its large use in dairy industry. We have analyzed data in the last 25 years, highlighting atypical resistance, genetic traits correlated to antibiotic resistance and their ability to be transmitted to other microorganisms; comparative analysis of resistomes was also considered. Differences were observed among wild strains isolated from different regions because of authorized antibiotic use. Commercial strains belonging to Lactobacillus, Streptococcus and Bifidobacterium currently used for industrial dairy products are frequently resistant to gentamycin, kanamycin, chloramphenicol together with tetracycline. The presence of resistant wild LAB in raw milk products has been significantly reduced as a result of worldwide restrictions on the use of antibiotics in animal husbandry. Transmissible resistances are still present in industrial cultures, despite the great effort of starter industries in the process control and the safety screening of commercial cultures.202235287818
366340.9997Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.202438391534
458050.9997Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Animal feed is increasingly being supplemented with antibiotics to decrease the risk of epidemics in animal husbandry. This practice could lead to the selection for antibiotic resistant micro-organisms. The aim of this study was to determine the level of antibiotic resistant bacteria present on retail and abattoir chicken. Staphylococci, Enterobacteriaceae, Salmonella and isolates from total aerobic plate count were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline and gentamicin using the disc diffusion susceptibility test; resistance to penicillin was determined using oxacillin. Results from the antibiotic code profile indicated that many of the bacterial strains were displaying multiple antibiotic resistance (MAR). A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by the abattoir samples, therefore suggesting that the incidence of MAR pathogenic bacteria was also higher in the abattoir samples. This resistance spectrum of abattoir samples is a result of farmers adding low doses of antibiotics to livestock feed to improve feeding efficiency so that the animals need less food to reach marketable weight. The lower incidence of MAR pathogenic bacteria in the retail samples is a result of resistance genes being lost due to lack of selective pressure, or to the fact that the resistant flora are being replaced by more sensitive flora during processing. The use of subtherapeutic levels of antibiotics for prophylaxis and as growth promoters remains a concern as the laws of evolution dictate that microbes will eventually develop resistance to practically any antibiotic. Selective pressure exerted by widespread antimicrobial use is therefore the driving force in the development of antibiotic resistance. This study indicated that a large proportion of the bacterial flora on fresh chicken is resistant to a variety of antibiotics, and that resultant food-related infections will be more difficult to treat.19989633089
366460.9997Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products.201223023749
457270.9997Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.202336462825
590880.9997Evaluation of Tetracycline Resistance and Determination of the Tentative Microbiological Cutoff Values in Lactic Acid Bacterial Species. Lactic acid bacteria (LAB) are widely used as probiotics in the food industry owing to their beneficial effects on human health. However, numerous antibiotic resistance genes have been found in LAB strains, especially tetracycline resistance genes. Notably, the potential transferability of these genes poses safety risks. To comprehensively evaluate tetracycline resistance in LAB, we determined the tetracycline susceptibility patterns of 478 LAB strains belonging to four genera and eight species. By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. Thus, based on the minimum inhibitory concentrations of tetracycline for these LAB strains, the species-specific microbiological cutoff values for Lactobacillus (para)gasseri, Lactobacillus johnsonii, and Lactobacillus crispatus to tetracycline were first developed using the Turnidge, Kronvall, and eyeball methods. The cutoff values for Lactiplantibacillus plantarum were re-established and could be used to better distinguish susceptible strains from strains with acquired resistance. Finally, we verified that these five genes play a role in tetracycline resistance and found that tet(M) and tet(W/N/W) are the most widely distributed tetracycline resistance genes in LAB.202134683449
460890.9997Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.202134827252
2819100.9997Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments.202236088413
3607110.9997Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics. Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings.200919857138
2822120.9997Antimicrobial resistance of bacterial flora associated with bovine products in South Africa. The administration of subtherapeutic doses of antibiotics to livestock introduces selective pressures that may lead to the emergence and dissemination of resistant bacteria. This study determined the antibiotic-resistance spectra of the microbial flora found on freshly slaughtered and retail beef and in unpasteurized and pasteurized packaged milk. Staphylococci, Enterobacteriaeae, and isolates from total aerobic plate counts were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline, and gentamicin using the disc diffusion susceptibility test and resistance to penicillin was determined by using oxacillin. A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by isolates from abattoir samples. The incidence of multiple antibiotic resistance (MAR) pathogenic bacteria is also higher in the abattoir. Resistance genes lost because of lack of selective pressure or resistant flora being replaced by more sensitive flora during processing is the reason for the lower incidence of MAR pathogenic bacteria among retail samples. These resistant bacteria can be transferred to humans through the consumption of rare or raw beef and unpasteurized milk, thus rendering the resultant food-related infections difficult to treat. The present findings clearly demonstrate that antibiotic-resistant bacteria in beef and milk pose a serious problem in South Africa.199910382649
5736130.9997Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness.202540872636
3397140.9997Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. The objective of the study was to improve the understanding of antibiotic resistance (AR) ecology through characterization of antibiotic-resistant commensal isolates associated with an aquaculture production system. A total of 4767 isolates non-susceptible to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or cefotaxime (Ctx), originated from fish, feed, and environmental samples of an aquaculture farm with no known history of antibiotic applications were examined. Close to 80% of the isolates exhibited multi-drug resistance in media containing the corresponding antibiotics, and representative AR genes were detected in various isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance in other bacteria by transformation. The AR traits in many isolates were stable in the absence of selective pressure. AR-rich feed and possibly environmental factors may contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration test, brain heart infusion medium was found more suitable for majority of the bacteria examined than cation-adjusted Mueller Hinton broth, with latter being the recommended medium for clinical isolates by standard protocol. The data indicated a need to update the methodology due to genetic diversity of microbiota for better understanding of the AR ecology.201526441859
5642150.9997Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment.201526385434
3937160.9997Design of a system for monitoring antimicrobial resistance in pathogenic, zoonotic and indicator bacteria from food animals. DANMAP is a Danish programme for integrated monitoring of and research on antimicrobial resistance in bacteria from food animals, food and humans. The paper describes how bacteria from broilers, pigs, and cattle are collected, as well as the procedures for data handling and presentation of results. The bacteria from animals include certain pathogens, selected so that they are representative for submissions to Danish diagnostic laboratories, as well as zoonotic bacteria (Campylobacter, Salmonella and Yersinia) and indicator bacteria (E. coli, E. faecium and E. faecalis), from samples collected at abattoirs. The latter samples are selected so that they are representative of the respective animal populations. Therefore, the apparent prevalence of antimicrobial resistance in the populations may be calculated. The isolates are identified to species level and the results of susceptibility testing are stored as continuous variables. All isolates are maintained in a strain collection so that they are available for subsequent research projects. The data handling facilities makes it possible to present results as percent resistant isolates or as the apparent prevalence of resistance in the population, or alternatively as graphical distributions of mm inhibition zones or MIC values. Computer routines have been established that make it possible to detect specific phenotypic expressions of resistance that may be of particular interest.199910783720
3942170.9997Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. The rapid emergence of antibiotic-resistant (ART) pathogens is a major threat to public health. While the surfacing of ART food-borne pathogens is alarming, the magnitude of the antibiotic resistance (AR) gene pool in food-borne commensal microbes is yet to be revealed. Incidence of ART commensals in selected retail food products was examined in this study. The presence of 10(2)-10(7) CFU of ART bacteria per gram of foods in many samples, particularly in ready-to-eat, 'healthy' food items, indicates that the ART bacteria are abundant in the food chain. AR-encoding genes were detected in ART isolates, and Streptococcus thermophilus was found to be a major host for AR genes in cheese microbiota. Lactococcus lactis and Leuconostoc sp. isolates were also found carrying AR genes. The data indicate that food could be an important avenue for ART bacterial evolution and dissemination. AR-encoding plasmids from several food-borne commensals were transmitted to Streptococcus mutans via natural gene transformation under laboratory conditions, suggesting the possible transfer of AR genes from food commensals to human residential bacteria via horizontal gene transfer.200616445749
5647180.9997Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment.200312540187
3398190.9997Ubiquity of R factor-mediated antibiotic resistance in the healthy population. An attempt was made to assess the occurrence of R factor-mediated antibiotic resistance in the healthy population. Samples of aerobic, gram-negative intestinal bacteria from men from various parts of the country at military conscription were analysed for transferable drug resistance. The obtained frequency, about 15% of R factor carriers in the studied group, was interpreted to reflect the existence of a reservoir of R factors, from which resistant, pathogenic bacteria could be selected under antibiotic therapy. Resistance to tetracycline, streptomycin and sulfonamides dominated among the identified R factor-borne resistance traits.1977320655