# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3643 | 0 | 1.0000 | Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. BACKGROUND: Antimicrobial resistance (AMR) is one of the biggest threats to public health. The food chain has been recognised as a vehicle for transmitting AMR bacteria. However, information about resistant strains isolated from African traditional fermented foods remains limited. Nono is a traditional, naturally fermented milk product consumed by many pastoral communities across West Africa. The main aim of this study was to investigate and determine the AMR patterns of lactic acid bacteria (LAB) involved in the traditional fermentation of milk for Nono production, and the presence of transferable AMR determinants. METHODS: One hundred (100) LAB isolates from Nono identified in a previous study as Limosilactobacillus fermentum, Lactobacillus delbrueckii, Streptococcus thermophilus, Streptococcus infantarius, Lentilactobacillus senioris, Leuconostoc pseudomesenteriodes, and Enterococcus thailandicus were investigated. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobials using the micro-broth dilution method. In addition, LAB isolates were screened for 28 antimicrobial resistance genes using PCR. The ability of LAB isolates to transfer tetracycline and streptomycin resistance genes to Enterococcus faecalis was also investigated. RESULTS: The experiments revealed variable antimicrobial susceptibility according to the LAB isolate and the antimicrobial tested. The tetracycline resistance genes tet(S) and tet(M) were detected in isolates Ent. thailandicus 52 and S. infantarius 10. Additionally, aad(E) encoding resistance to streptomycin was detected in Ent. thailandicus 52. The conjugation experiments suggested that the tet(S) and aad(E) genes were transferable in vitro from isolate Ent. thailandicus 52 to Ent. faecalis JH2-2. SIGNIFICANCE AND IMPACT: Traditional fermented foods play a significant role in the diet of millions of people in Africa, yet their contribution to the burden of AMR is largely unknown. This study highlights that LAB involved in traditionally fermented foods could be potential reservoirs of AMR. It also underscores the relevant safety issues of Ent. thailandicus 52 and S. infantarius 10 for use as starter cultures as they carry transferable AMR genes. Starter cultures are an essential aspect of improving the safety and quality attributes of African fermented foods. However, AMR monitoring is an important safety aspect in the selection of starter cultures for improving traditional fermentation technologies. | 2023 | 37237746 |
| 5598 | 1 | 0.9997 | Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products. | 2025 | 40298519 |
| 5908 | 2 | 0.9997 | Evaluation of Tetracycline Resistance and Determination of the Tentative Microbiological Cutoff Values in Lactic Acid Bacterial Species. Lactic acid bacteria (LAB) are widely used as probiotics in the food industry owing to their beneficial effects on human health. However, numerous antibiotic resistance genes have been found in LAB strains, especially tetracycline resistance genes. Notably, the potential transferability of these genes poses safety risks. To comprehensively evaluate tetracycline resistance in LAB, we determined the tetracycline susceptibility patterns of 478 LAB strains belonging to four genera and eight species. By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. Thus, based on the minimum inhibitory concentrations of tetracycline for these LAB strains, the species-specific microbiological cutoff values for Lactobacillus (para)gasseri, Lactobacillus johnsonii, and Lactobacillus crispatus to tetracycline were first developed using the Turnidge, Kronvall, and eyeball methods. The cutoff values for Lactiplantibacillus plantarum were re-established and could be used to better distinguish susceptible strains from strains with acquired resistance. Finally, we verified that these five genes play a role in tetracycline resistance and found that tet(M) and tet(W/N/W) are the most widely distributed tetracycline resistance genes in LAB. | 2021 | 34683449 |
| 3663 | 3 | 0.9997 | Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted. | 2024 | 38391534 |
| 5597 | 4 | 0.9997 | Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLS(b), L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance. | 2023 | 36712199 |
| 5994 | 5 | 0.9996 | Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. Lactobacillus fermentum colonizing gastrointestinal and urogenital tracts of humans and animals is widely used in manufacturing of fermented products and as probiotics. These bacteria may function as vehicles of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Therefore, monitoring and control of transmissible antibiotic resistance determinants in these microorganisms is necessary to approve their safety status. The aim of this study was to characterize erythromycin and tetracycline resistance of L. fermentum isolates and to estimate the potential transfer of resistance genes from lactobacilli to the other Gram-positive and Gram-negative bacteria. Among six L. fermentum strains isolated from human feces and commercial dairy products, five strains demonstrated phenotypic resistance to tetracycline. PCR screening for antibiotic resistance determinants revealed plasmid-located tetracycline resistance genes tet(K) and tet(M) in all strains and erythromycin resistance genes erm(B) in the chromosome of L. fermentum 5-1 and erm(C) in the plasmid of L. fermentum 3-4. All tested lactobacilli lacked conjugative transposon Tn916 and were not able to transfer tetracycline resistance genes to Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Acinetobacter baumannii, Citrobacter freundii, and Escherichia coli by filter mating. Staphylococcus haemolyticus did not accept erythromycin resistance genes from corresponding Lactobacillus strains. Thus, in the present study, L. fermentum was not implicated in the spread of erythromycin and tetracycline resistance, but still these strains pose the threat to the environment and human health because they harbored erythromycin and tetracycline resistance genes in their plasmids and therefore should not be used in foods and probiotics. | 2018 | 30534155 |
| 5905 | 6 | 0.9996 | Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. | 2017 | 28182844 |
| 5500 | 7 | 0.9996 | Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria. | 2022 | 35150575 |
| 5909 | 8 | 0.9996 | Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. Lactobacillus reuteri and Lactobacillus fermentum, which are commonly used as food processing aids and probiotics, can potentially act as reservoirs of antibiotic resistance genes. Acquired resistance genes may be transferred via the food chain or in the gastrointestinal tract to pathogenic bacteria. Knowledge of the distributions of antibiotic MICs for a species is needed when using a phenotypic method to assess the presence of acquired resistance genes. In the present study, 56 L. reuteri and 56 L. fermentum strains that differed by source and spatial and temporal origin were assessed for antibiotic susceptibility using an Etest kit and a broth microdilution protocol. L. fermentum strains displayed a uniform distribution of MICs for all six antibiotics tested. L. reuteri strains had a bimodal distribution of MICs or a distribution with MICs above the test range for 7 of the 14 antibiotics tested. Genetic relatedness was observed among L. reuteri strains with high MICs for both ampicillin and tetracycline and among strains with high MICs for both erythromycin and clindamycin. Results obtained with the Etest and the broth microdilution method corresponded well with each other. Thus, further research may make it possible to define microbiological breakpoints for distinguishing between strains with and without acquired resistance genes. | 2007 | 17340877 |
| 5910 | 9 | 0.9996 | Antimicrobial Susceptibility Testing and Tentative Epidemiological Cutoff Values for Five Bacillus Species Relevant for Use as Animal Feed Additives or for Plant Protection. Bacillus megaterium (n = 29), Bacillus velezensis (n = 26), Bacillus amyloliquefaciens (n = 6), Bacillus paralicheniformis (n = 28), and Bacillus licheniformis (n = 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C for B. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in one B. megaterium strain with an elevated chloramphenicol MIC compared to the other B. megaterium strains. In B. velezensis and B. amyloliquefaciens, a putative tetracycline efflux gene, tet(L), was found in all strains (n = 27) with reduced tetracycline susceptibility but was absent in susceptible strains. All B. paralicheniformis and 23% of B. licheniformis strains had elevated MICs for erythromycin and harbored ermD The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCE When commercializing bacterial strains, like Bacillus spp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for five Bacillus species were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases. | 2018 | 30030233 |
| 4678 | 10 | 0.9996 | Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus. | 2021 | 34277757 |
| 2557 | 11 | 0.9996 | Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level. Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers. | 2018 | 29559960 |
| 5904 | 12 | 0.9996 | Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. OBJECTIVES: To determine MICs of 16 antimicrobials representing all major classes for 473 taxonomically well-characterized isolates of lactic acid bacteria (LAB) encompassing the genera Lactobacillus, Pediococcus and Lactococcus. To propose tentative epidemiological cut-off (ECOFF) values for recognizing intrinsic and acquired antimicrobial resistances in numerically dominant species. METHODS: On the basis of depositors' information, LAB were grouped in categories of probiotic, nutritional, probiotic or nutritional research, human and animal isolates and tested for their antibiotic susceptibilities by broth microdilution using LAB susceptibility test medium (LSM). Tentative ECOFFs were defined according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing. Isolates showing acquired antimicrobial resistance(s) were selected for PCR-based detection of resistance gene(s) and in vitro conjugative transfer experiments. RESULTS: Tentative ECOFF values of 13 antibiotics were determined for up to 12 LAB species. Generally, LAB were susceptible to penicillin, ampicillin, ampicillin/sulbactam, quinupristin/dalfopristin, chloramphenicol and linezolid. LAB exhibited broad or partly species-dependent MIC profiles of trimethoprim, trimethoprim/sulfamethoxazole, vancomycin, teicoplanin and fusidic acid. Three probiotic Lactobacillus strains were highly resistant to streptomycin. Although erythromycin, clindamycin and oxytetracycline possessed high antimicrobial activities, 17 Lactobacillus isolates were resistant to one or more of these antibiotics. Eight of them, including six probiotic and nutritional cultures, possessed erm(B) and/or tet(W), tet(M) or unidentified members of the tet(M) group. In vitro intra- and interspecies filter-mating experiments failed to show transfer of resistance determinants. CONCLUSIONS: Finding of acquired resistance genes in isolates intended for probiotic or nutritional use highlights the importance of antimicrobial susceptibility testing in documenting the safety of commercial LAB. | 2007 | 17369278 |
| 4679 | 13 | 0.9996 | Antimicrobial and Phylogenomic Characterization of Bacillus cereus Group Strains Isolated from Different Food Sources in Italy. Background:Bacillus cereus is a widespread environmental Gram-positive bacterium which is especially common in soil and dust. It produces two types of toxins that cause vomiting and diarrhea. At present, foodborne outbreaks due to Bacillus cereus group bacteria (especially Bacillus cereus sensu stricto) are rising, representing a serious problem in the agri-food supply chain. Methods: In this work, we analyzed 118 strains belonging to the Bacillus cereus group, isolated from several food sources, for which in vitro and in silico antibiotic resistance assessments were performed. Results: Many strains showed intermediate susceptibility to clindamycin, erythromycin, and tetracycline, suggesting an evolving acquisition of resistance against these antibiotics. Moreover, one strain showed intermediate resistance to meropenem, an antibiotic currently used to treat infections caused by Bacillus cereus. In addition to the phenotypic antimicrobial resistance profile, all strains were screened for the presence/absence of antimicrobial genes via whole-genome sequencing. There was inconsistency between the in vitro and in silico analyses, such as in the case of vancomycin, for which different isolates harbored resistance genes but, phenotypically, the same strains were sensitive. Conclusions: This would suggest that antibiotic resistance is a complex phenomenon due to a variety of genetic, epigenetic, and biochemical mechanisms. | 2024 | 39335071 |
| 2435 | 14 | 0.9996 | Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. This study aimed to characterize lactic acid bacteria (LAB) and coagulase-negative staphylococci (CoNS) isolated from traditionally produced sucuk for their potential use in starter culture development and food safety applications in fermented meat products. A total of 145 isolates (95 LAB and 50 CoNS) were analyzed through genetic identification, phylogenetic analysis, and assessments of technological properties. Antagonistic activity against Listeria monocytogenes and Staphylococcus aureus was also evaluated, along with antibiotic sensitivity. Among LAB, Lactiplantibacillus plantarum was the most prevalent species (60 isolates), while Staphylococcus xylosus was the predominant CoNS species (24 isolates). The isolates exhibited diverse technological properties and varying levels of antagonistic activity against the tested pathogens. Antibiotic sensitivity tests indicated that 15 selected isolates were negative for antibiotic resistance genes. Overall, this comprehensive characterization provides valuable insights for the development of starter cultures and for enhancing food safety in fermented meat products. | 2025 | 41154032 |
| 5907 | 15 | 0.9996 | Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents. | 2001 | 11482563 |
| 3664 | 16 | 0.9996 | Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products. | 2012 | 23023749 |
| 2818 | 17 | 0.9995 | Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. Proper knowledge of antibiotic resistance (AR) dissemination is essential for effective mitigation. This study examined the profiles of tetracycline-resistant (Tetr) commensal bacteria from representative ready-to-consume food samples from salad bars at local grocery stores and restaurants. Out of 900 Tetr isolates examined, 158 (17.6%) carried one or more of tetM, tetL, tetS, and tetK genes by conventional PCR, 28 harbored more than one Tetr determinants. The most prevalent genotype was tetM, which was detected in 70.9% of the AR gene carriers, followed by tetL (31.6%), tetS (13.9%), and tetK (2.5%). Identified AR gene carriers included Enterococcus, Lactococcus, Staphylococcus, Brochothrix, Carnobacterium, Stenotrophomonas, Pseudomonas, and Sphingobacterium, by 16S rRNA gene sequence analysis. AR determinants were successfully transmitted, and led to resistance in Streptococcus mutans via natural gene transformation and Enterococcus faecalis via electroporation, suggesting the functionality and mobility of the AR genes from the food commensal bacteria. In addition, the AR traits in many isolates are quite stable, even in the absence of the selective pressure. The identification of new commensal carriers for representative AR genes revealed the involvement of a broad spectrum of bacteria in the horizontal transmission of AR genes. Meanwhile, the spectrum of the antibiotic-resistant bacteria differed from the spectrum of the total bacteria (by denaturing gradient gel electrophoresis) associated with the food items. Our data revealed a common avenue in AR exposure and will assist in proper risk assessment and the development of comprehensive mitigation strategies to effectively combat AR. | 2010 | 21067672 |
| 5811 | 18 | 0.9995 | Antimicrobial susceptibility testing and tentative epidemiological cut-off values for Lactobacillaceae family species intended for ingestion. INTRODUCTION: In this work, 170 strains covering 13 species from the Lactobacillaceae family were analyzed to determine minimal inhibitory concentration (MIC) distributions to nine antimicrobial agents, and genes potentially conferring resistance. This allows a proposal of tentative Epidemiological Cut-Offs (ECOFFs) that follows the phylogeny for interpretation of resistance in the 13 species. METHODS: The 170 strains originated from different sources, geographical areas, and time periods. MICs for nine antibiotics were determined according to the ISO 10932 standard for lactobacillia and by a modified CLSI-method for Leuconostoc and Pediococcus which ensured sufficient growth. The strains were whole genome sequenced, subtyped by core genome analysis, and assessed for the presence of antibiotic resistance genes using the ResFinder and NCBI AMRFinder databases. RESULTS AND DISCUSSION: The data provide evidence that antimicrobial susceptibility follows phylogeny instead of fermentation pattern and accordingly, tentative ECOFFs were defined. For some species the tentative ECOFFs for specific antibiotics are above the cut-off values set by the European Food Safety Authority (EFSA) which are primarily defined according to fermentation pattern or at genus level. The increased tolerance for specific antibiotics observed for some species was evaluated to be innate, as only for one strain phenotypic resistance was found to be related to an acquired resistance gene. In general, more data are needed to define ECOFFs and since the number of isolates available for industrial relevant bacterial species are often limited compared to clinically relevant species, it is important; 1) that strains are unambiguously defined at species level and subtyped through core genome analysis, 2) MIC determination are performed by use of a standardized method to define species-specific MIC distributions and 3) that known antimicrobial resistance genes are determined in whole genome sequences to support the MIC determinations. | 2023 | 39816654 |
| 2432 | 19 | 0.9995 | Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Spore-forming probiotic Bacillus spp. have received extensively increasing scientific and commercial interest, but raised the concerns in the potential risks and pathogenesis. In this study, 50 commercial probiotic products were collected from all over the country and Bacillus spp. isolated from products were evaluated for the safety on the aspects of hemolytic activity, contamination profiles, toxin genes, cytotoxicity, antimicrobial resistance, and genotyping. 34 probiotic products (68%) exhibited hemolysis, including 19 human probiotics, 9 animal probiotics, and 6 plant probiotics. 28 products (56%) contained other bacteria not labeled in the ingredients. 48 strains in Bacillus spp. including 17 B. subtilis group isolates, 28 B. cereus, and 3 other Bacillus spp. were isolated from human, food animal, and plant probiotic products. Detection rates of enterotoxin genes, nheABC and hblCDA, and cytotoxin cytK2 in 48 Bacillus spp. isolates were 58%, 31%, and 46%, respectively. Also, one isolate B. cereus 34b from an animal probiotic product was positive for ces, encoding cereulide. 28 of 48 Bacillus spp. isolates were cytotoxic. 19 of 28 B. cereus isolates maintained to exhibit hemolysis after heat treatment. All 48 Bacillus spp. isolates exhibited resistance to lincomycin, and 5 were resistant to tetracycline. The genotyping of commercial probiotic Bacillus spp. reported in this study showed that ces existed in B. cereus 34b with the specific sequence type (ST1066). These findings support the hypothesis that probiotic products were frequently contaminated and that some commercial probiotics consisted of Bacillus spp. may possess toxicity and antimicrobial resistance genes. Thus, the further efforts are needed in regarding the surveillance of virulence factors, toxins, and antibiotic resistance determinants in probiotic Bacillus spp. | 2021 | 33509502 |