# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3638 | 0 | 1.0000 | Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable. | 2014 | 25525617 |
| 2879 | 1 | 0.9997 | Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. The prevalence and degree of antibiotic resistance in catfish and eel farms in the southern part of The Netherlands was examined using motile aeromonads as indicator bacteria. A total of 29 water samples were collected, originating from six catfish farms, one catfish hatchery and three eel farms, and were plated on an Aeromonas-selective agar with and without antibiotics. From each plate, one colony was screened for presumptive motile aeromonads and tested for antibiotic susceptibility. The prevalence of resistance was as follows: ampicillin and oxytetracycline 100%; sulfamethoxazole 24%; trimethoprim 3%; and ciprofloxacin and chloramphenicol 0%. The majority of samples showed a high degree of oxytetracycline resistance, implicating fish farms as a major reservoir of oxytetracycline resistance genes. This reservoir might form a risk for human health and has major consequences for the effectiveness of this antibiotic in the treatment of infectious diseases in fish. | 2008 | 18160266 |
| 2817 | 2 | 0.9997 | Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed. | 2011 | 21145609 |
| 5543 | 3 | 0.9997 | Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments. | 2006 | 16630011 |
| 2851 | 4 | 0.9996 | Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. | 2010 | 20356660 |
| 2884 | 5 | 0.9996 | Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. A potential bioindicator of marine contamination? Antibiotic resistance in bacteria is a growing problem that is not only restricted to the clinical setting but also to other environments such as marine species that harbor antibiotic resistant bacteria and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to evaluate antibiotic resistance phenotypes in enterococci isolated from fecal samples of gilthead seabream and the associated mechanisms of resistance. A collection of 118 samples were analyzed and 73 enterococci were recovered. The strains showed high percentages of resistance to erythromycin and tetracycline (58.9% and 17.8%, respectively). Lower level of resistance (<13%) was detected for quinupristin-dalfopristin, ampicillin, high-level-gentamicin, high-level-streptomycin, high-level-kanamycin, ciprofloxacin and chloramphenicol. The erm(B), tet(L) or tet(M), aac(6')-aph(2″) and aph(3')-IIIa genes were shown in isolates resistant to erythromycin, tetracycline, high-level gentamicin and high-level kanamycin, respectively. Antibiotic resistance in natural microbiota is becoming a concern of human and environmental health. | 2011 | 21511306 |
| 2852 | 6 | 0.9996 | The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. Anaerobic bacteria of the genus Bacteroides are a large group of commensal microorganisms that colonize the human and animal digestive tract. The genus Bacteroides and the closely related genus Parabacteroides include the Bacteroides fragilis group (BFG) of potentially pathogenic bacteria which are frequently isolated from patients with anaerobic infections. The aim of this study was to assess the antimicrobial resistance of environmental strains of the Bacteroides fragilis group. Strains were isolated from human feces, hospital wastewater, influent (UWW) and effluent (TWW) wastewater from a wastewater treatment plant (WWTP), and from the feces of lab rats as a negative control to monitor the entire route of transmission of BFG strains from humans to the environment. The resistance of 123 environmental BFG strains to six antibiotic groups was analyzed with the use of culture-dependent methods. Additionally, the presence of 25 genes encoding antibiotic resistance was determined by PCR. The analyzed environmental BFG strains were highly resistant to the tested antibiotics. The percentage of resistant strains differed between the analyzed antibiotics and was determined at 97.56% for ciprofloxacin, 49.59% for erythromycin, 44.71% for ampicillin, 35.77% for tetracycline, 32.52% for amoxicillin/clavulanic acid, 26.83% for chloramphenicol, 26.01% for clindamycin, 11.38% for moxifloxacin, and 8.94% for metronidazole. The highest drug-resistance levels were observed in the strains isolated from UWW and TWW samples. The mechanisms of antibiotic-resistance were determined in phenotypically resistant strains of BFG. Research has demonstrated the widespread presence of genes encoding resistance to chloramphenicol (100% of all chloramphenicol-resistant strains), tetracyclines (97.78% of all tetracycline-resistant strains), macrolides, lincosamides and streptogramins (81.97% of all erythromycin-resistant strains). Genes encoding resistance to β-lactams and fluoroquinolones were less prevalent. None of the metronidazole-resistant strains harbored the gene encoding resistance to nitroimidazoles. BFG strains isolated from UWW and TWW samples were characterized by the highest diversity of antibiotic-resistance genes and were most often drug-resistant and multidrug-resistant. The present study examines the potential negative consequences of drug-resistant and multidrug-resistant BFG strains that are evacuated with treated wastewater into the environment. The transmission of these bacteria to surface water bodies can pose potential health threats for humans and animals; therefore, the quality of treated wastewater should be strictly monitored. | 2019 | 30682596 |
| 5628 | 7 | 0.9996 | Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea? Sea turtles can be considered a sentinel species for monitoring the health of marine ecosystems, acting, at the same time, as a carrier of microorganisms. Indeed, sea turtles can acquire the microbiota from their reproductive sites and feeding, contributing to the diffusion of antibiotic-resistant strains to uncontaminated environments. This study aims to unveil the presence of antibiotic-resistant bacteria in (i) loggerhead sea turtles stranded along the coast of Sicily (Mediterranean Sea), (ii) unhatched and/or hatched eggs, (iii) sand from the turtles' nest and (iv) seawater. Forty-four bacterial strains were isolated and identified by conventional biochemical tests and 16S rDNA sequencing. The Gram-negative Aeromonas and Vibrio species were mainly found in sea turtles and seawater samples, respectively. Conversely, the Gram-positive Bacillus, Streptococcus, and Staphylococcus strains were mostly isolated from eggs and sand. The antimicrobial resistance profile of the isolates revealed that these strains were resistant to cefazolin (95.5%), streptomycin (43.2%), colistin and amoxicillin/clavulanic acid (34.1%). Moreover, metagenome analysis unveiled the presence of both antibiotic and heavy metal resistance genes, as well as the mobile element class 1 integron at an alarming percentage rate. Our results suggest that Caretta caretta could be considered a carrier of antibiotic-resistant genes. | 2020 | 32164241 |
| 2848 | 8 | 0.9996 | Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood. | 2023 | 38144894 |
| 2870 | 9 | 0.9996 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish. Seawater and shellfish samples collected in the vicinity of a marine sewage outfall were examined for the incidence of antibiotic resistance among coliform and fecal coliform bacteria over a 2-year period. Seventy percent or more of these two groups of bacteria from both sources were resistant to one or more antibiotics. Forty-five percent of the isolates resistant to streptomycin or tetracycline were capable of transferring all or part of their resistance pattern to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779632 |
| 2881 | 10 | 0.9996 | Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits. | 2015 | 26280543 |
| 5529 | 11 | 0.9996 | Vancomycin and florfenicol resistant Enterococcus faecalis and Enterococcus faecium isolated from human urine in an Egyptian urban-rural community. Multidrug resistance is one of the top three threats to global public health. Understanding resistance of bacteria is important to help decrease resistance and improve the development of novel antimicrobial agents or other alternative tools to combat public health challenges. Thus, the goal of this study was to investigate the vancomycin and florfenicol resistance genes of five E. faecalis and 15 E. faecium isolated from patients with urinary tract infections. There were 20 Enterococcus obtained from the library collection of randomly selected private hospitals located in the city of El Qanater El Khayreya; these samples were isolated during 2017. Samples were evaluated for their phenotypic characterization of virulence factors, antimicrobial resistance and PCR was conducted to detect the prescence of the vancomycin vanABC and florfenicol resistance genes encoding the catAB, fexAB and cfu. There were six different antibiotic resistance profiles observed. The 20 isolates showed resistance to clindamycin, oxytetracycline and gentamycin. Resistance was evident to ciprofloxacin, norfloxacin and florfenicol in the absence of the cfr gene in all of the 20 Enterococcus isolates. In addition, all isolates produced biofilms and were classified as extensive drug resistant. MAR(indices) of the isolates were >0.6. The MAR(index) of human isolates of enterococci suggest these pathogens originate from a high-risk source of contamination where antibiotics are often used. This information highlights a possible public health concern to the Egyptian community. The results also suggest the emergence of a linezolid sensitive-vancomycin resistant E. faecium and E. faecalis in the absence of the cfr gene. | 2020 | 31600524 |
| 2849 | 12 | 0.9996 | Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation. | 2021 | 33558614 |
| 5541 | 13 | 0.9996 | Molecular characterization and antimicrobial resistance profile of fecal contaminants and spoilage bacteria that emerge in rainbow trout (Oncorhynchus mykiss) farms. Fecal contaminants are a major public concern that directly affect human health in the fish production industry. In this study, we aimed to determine the fecal coliform, spoilage bacteria, and antimicrobial-resistant bacterial contamination in rainbow trout (Oncorhynchus mykiss) farms. Fish were sampled from rainbow trout farms that have a high production capacity and are established on spring water, stream water, and dammed lakes in six different regions of Turkey. A total of seven Enterobacter subspecies, two strains of Pseudomonas spp., and one isolate each of Morganella and Stenotrophomonas were characterized based on biochemical and molecular methods, including the 16S rRNA and gyrB housekeeping gene regions. The sequencing results obtained from the 16S rRNA and gyrB gene regions were deposited in the GenBank database and compared with isolates from different countries, which were registered in the database. Resistance to 10 different antimicrobial compounds was determined using the broth microdilution method, and molecular resistance genes against florfenicol, tetracycline, and sulfamethoxazole were identified by PCR. All detected resistance genes were confirmed by sequencing analyses. E. cloacae, E. asburiae, Pseudomonas spp., S. maltophilia, and M. psychrotolerans were identified using the gyrB housekeeping gene, while isolates showed different biochemical characteristics. All isolates were found to be phenotypically resistant to sulfamethoxazole, and some isolates were resistant to tetracycline, florfenicol, amoxicillin, and doxycycline; the resistance genes of these isolates included floR, tetC, tetD, and tetE. We showed that fecal coliforms, spoilage bacteria, and antimicrobial resistant bacteria were present in farmed rainbow trout, and they pose a threat for human health and must be controlled in the farming stage of fish production. | 2019 | 31106106 |
| 2854 | 14 | 0.9996 | Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2015 | 25993887 |
| 2885 | 15 | 0.9996 | Antimicrobial susceptibility of Streptococcus gallolyticus isolated from humans and animals. Susceptibilities to some antimicrobial agents and distribution of genes associated with resistance were examined in a total of 66 Streptococcus gallolyticus isolates and reference strains from various sources. All the tested bacteria were susceptible to vancomycin, penicillin G, and ampicillin. Most of the erythromycin-resistant isolates were observed in human clinical samples. Tetracycline and doxycycline resistance was prevalent in the isolates from human patients, diseased animals, and healthy broiler chickens, while the prevalence was significantly lower in the isolates from healthy mammals. All the isolates resistant to tetracycline possessed tet(M) and/or tet(L) and/or tet(O) genes. However, most isolates from healthy animals, which were susceptible to tetracycline, possessed the above-cited resistance genes, implying the potential ability for resistance under exposure to the corresponding antimicrobial agents. | 2013 | 23883848 |
| 2822 | 16 | 0.9996 | Antimicrobial resistance of bacterial flora associated with bovine products in South Africa. The administration of subtherapeutic doses of antibiotics to livestock introduces selective pressures that may lead to the emergence and dissemination of resistant bacteria. This study determined the antibiotic-resistance spectra of the microbial flora found on freshly slaughtered and retail beef and in unpasteurized and pasteurized packaged milk. Staphylococci, Enterobacteriaeae, and isolates from total aerobic plate counts were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline, and gentamicin using the disc diffusion susceptibility test and resistance to penicillin was determined by using oxacillin. A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by isolates from abattoir samples. The incidence of multiple antibiotic resistance (MAR) pathogenic bacteria is also higher in the abattoir. Resistance genes lost because of lack of selective pressure or resistant flora being replaced by more sensitive flora during processing is the reason for the lower incidence of MAR pathogenic bacteria among retail samples. These resistant bacteria can be transferred to humans through the consumption of rare or raw beef and unpasteurized milk, thus rendering the resultant food-related infections difficult to treat. The present findings clearly demonstrate that antibiotic-resistant bacteria in beef and milk pose a serious problem in South Africa. | 1999 | 10382649 |
| 5630 | 17 | 0.9996 | Preliminary Results on the Prevalence of Salmonella spp. in Marine Animals Stranded in Sicilian Coasts: Antibiotic Susceptibility Profile and ARGs Detection in the Isolated Strains. The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (bla(TEM), bla(OXA), tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach. | 2021 | 34451393 |
| 5598 | 18 | 0.9996 | Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products. | 2025 | 40298519 |
| 2831 | 19 | 0.9996 | Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. AIMS: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. METHODS AND RESULTS: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. CONCLUSIONS: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world. | 2007 | 18045442 |