Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
363601.0000Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.200616909348
363510.9999Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China. Oxytetracycline-resistant bacteria were isolated from a mariculture farm in China, and accounted for 32.23% and 5.63% of the total culturable microbes of the sea cucumber and the sea urchin rearing waters respectively. Marine vibrios, especially strains related to Vibrio splendidus or V. tasmaniensis, were the most abundant resistant isolates. For oxytetracycline resistance, tet(A), tet(B) and tet(D) genes were detected in both sea cucumber and sea urchin rearing ponds. The dominant resistance type for V. tasmaniensis-like strains was the combination of both tet(A) and tet(B) genes, while the major resistance type for V. splendidus-like strains was a single tet(D) gene. Most of the sea cucumber tet-positive isolates harbored a chloramphenicol-resistance gene, either cat IV or cat II, while only a few sea urchin tet-positive isolates harbored a cat gene, actually cat IV. The coexistence of tet and cat genes in the strains isolated from the mariculture farm studied was helpful in explaining some of the multi-resistance mechanisms.200616828121
283120.9998Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. AIMS: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. METHODS AND RESULTS: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. CONCLUSIONS: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world.200718045442
283030.9998Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)-(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter.200817668262
363440.9998Molecular characterizations of chloramphenicol- and oxytetracycline-resistant bacteria and resistance genes in mariculture waters of China. In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discushannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibriosplendidus and Vibriotasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes.200919303610
355550.9997Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.201424612265
285160.9997Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta.201020356660
370370.9997Antibiotic resistance patterns of metal-tolerant bacteria isolated from an estuary. Estuarine bacteria isolated on metal-containing media were also found to be antibiotic resistant; ampicillin and chloramphenicol were the antibiotics to which resistance was most common. Patterns of antibiotic resistance were found associated with a variety of taxa.1977921251
554380.9997Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments.200616630011
592190.9997Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
2797100.9997Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. We sought to determine the distribution of resistance and the tetracycline resistance genes among bacteria isolated from a swine confined animal feeding facility where tetracycline-containing feed had been in use for over 20 years. Samples collected from feed, hogs, hog houses, waste lagoon, soil, surface water and well water were screened for the presence of (a) resistant Escherichia coli and enterococci and (b) tetracycline-resistant strains of all species. Genomic DNA was extracted from the latter strain collection and fragments from 16S rDNA and ten tetracycline resistance genes (tetA, tetB, tetC, tetE, tetH, tetL, tetM, tetS, tetT and rumB) were polymerase chain reaction-amplified and a partial nucleotide sequence was obtained. In this environment, 77% of E. coli and 68% of enterococci isolated were tetracycline resistant. Tetracycline resistance was found in 26 different bacterial genera and in 60 species. Single resistance gene alleles (as defined by nucleotide sequence) were present in multiple species. There was evidence of gene recombination and multiple different tetracycline resistance genes were present in single bacterial isolates. These data provide further evidence for the widespread distribution of resistance genes in microbial populations in settings in which there is ongoing subtherapeutic antimicrobial use.200717287111
2854110.9997Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.201525993887
3397120.9997Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. The objective of the study was to improve the understanding of antibiotic resistance (AR) ecology through characterization of antibiotic-resistant commensal isolates associated with an aquaculture production system. A total of 4767 isolates non-susceptible to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or cefotaxime (Ctx), originated from fish, feed, and environmental samples of an aquaculture farm with no known history of antibiotic applications were examined. Close to 80% of the isolates exhibited multi-drug resistance in media containing the corresponding antibiotics, and representative AR genes were detected in various isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance in other bacteria by transformation. The AR traits in many isolates were stable in the absence of selective pressure. AR-rich feed and possibly environmental factors may contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration test, brain heart infusion medium was found more suitable for majority of the bacteria examined than cation-adjusted Mueller Hinton broth, with latter being the recommended medium for clinical isolates by standard protocol. The data indicated a need to update the methodology due to genetic diversity of microbiota for better understanding of the AR ecology.201526441859
5922130.9997Incidence of infectious drug resistance among lactose-fermenting bacteria isolated from raw and treated sewage. Raw and treated sewage samples were examined for antibiotic-resistant, lactose-fermenting bacteria. Approximately 1% of the total lactose-fermenting bacteria were multiply resistant. Of these organisms, 50% were capable of transferring all or part of their resistance to a drug-sensitive recipient. Only 43% of those isolated on media containing a single antibiotic were capable of resistance transfer, whereas 57% of those recovered on multiple antibiotic plates transferred resistance. R factors conferring resistance to chloramphenicol, streptomycin, and tetracycline; streptomycin and tetracycline; and ampicillin, streptomycin, and tetracycline accounted for 22, 19, and 15%, respectively, of those identified. The data indicate a significant level of infectious drug resistance among the intestinal bacteria of the urban population.19695370461
3588140.9997Metal and antibiotic resistance of bacteria isolated from the Baltic Sea. The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.201223847817
2828150.9997The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances.202133558560
3396160.9997Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. The high use of antibiotics for the treatment of bacterial diseases is one of the main problems in the mass production of animal protein. Salmon farming in Chile is a clear example of the above statement, where more than 5,500 tonnes of antibiotics have been used over the last 10 years. This has caused a great impact both at the production level and on the environment; however, there are still few works in relation to it. In order to demonstrate the impact of the high use of antibiotics on fish gut microbiota, we have selected four salmon farms presenting a similar amount of fish of the Atlantic salmon species (Salmo salar), ranging from 4,500 to 6,000 tonnes. All of these farms used treatments with high doses of antibiotics. Thus, 15 healthy fish were selected and euthanised in order to isolate the bacteria resistant to the antibiotics oxytetracycline and florfenicol from the gut microbiota. In total, 47 bacterial isolates resistant to florfenicol and 44 resistant to oxytetracycline were isolated, among which isolates with Minimum Inhibitory Concentrations (MIC) exceeding 2048 μg/mL for florfenicol and 1024 μg/mL for oxytetracycline were found. In addition, another six different antibiotics were tested in order to demonstrate the multiresistance phenomenon. In this regard, six isolates of 91 showed elevated resistance values for the eight tested antibiotics, including florfenicol and oxytetracycline, were found. These bacteria were called "super-resistant" bacteria. This phenotypic resistance was verified at a genotypic level since most isolates showed antibiotic resistance genes (ARGs) to florfenicol and oxytetracycline. Specifically, 77% of antibiotic resistant bacteria showed at least one gene resistant to florfenicol and 89% showed at least one gene resistant to oxytetracycline. In the present study, it was demonstrated that the high use of the antibiotics florfenicol and oxytetracycline has, as a consequence, the selection of multiresistant bacteria in the gut microbiota of farmed fish of the Salmo salar species at the seawater stage. Also, the phenotypic resistance of these bacteria can be correlated with the presence of antibiotic resistance genes.201830204782
3631170.9997Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Twelve hundred enterobacterial Escherichia coli isolates of porcine origin were screened phenotypically for antibiotic resistance. The bacteria were isolated from 10 herds of swine with different histories of exposure to antimicrobial agents for therapeutic purposes. The bacterial isolates were part of the normal bacterial flora of the intestines of the animals because they were isolated from healthy individuals. The strains were tested for phenotypic antibiotic resistance against sulfonamides, trimethoprim, streptomycin, ampicillin, neomycin, chloramphenicol, and tetracycline. Resistance against streptomycin was found to be most common, followed by resistance against sulfonamides and tetracycline. The highest number of resistant bacteria was found in herds where the use of antimicrobial agents was considered to be high. A selection of multiresistant bacterial isolates were further genetically characterized by hybridization with probes specific for the antibiotic resistance genes; sulI, sulII, dfrI, dfrIIb, dfrIX, and the class A, B, C, and D tetracycline resistance determinants. A PCR was developed and used for detection of the strA-strB gene pair encoding streptomycin resistance in gram-negative bacteria. The strA-strB gene pair was the most frequent resistance determinant in the isolates examined. This study indicates that nonpathogenic E. coli from swine may represent a considerable reservoir of antibiotic resistance genes that might be transferable to pathogens.19989988047
2800180.9997Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment.200415268950
5544190.9997Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.202338136686