# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3614 | 0 | 1.0000 | Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. The microbial community structure in Thailand soils contaminated with low and high levels of arsenic was determined by denaturing gradient gel electrophoresis (DGGE). Band pattern analysis indicated that the bacterial community was not significantly different in the two soils. Phylogenetic analysis obtained by excising and sequencing six bands indicated that the soils were dominated by Arthobacter koreensis and proteobacteria. Two hundred and sixty-two bacterial isolates were obtained from arsenic contaminated soils. The majority of the As resistant isolates were gram-negative bacteria. MIC studies indicated that all of the tested bacteria had greater resistance to arsenate than arsenite. Some strains were capable of growing in medium containing up to 1,500 mg/l arsenite and arsenate. Correlations analysis of resistance patterns of arsenite resistance indicated that the isolated bacteria could be categorized into 13 groups, with a maximum similarity value of 100%. All strains were also evaluated for resistance to eight antibiotics. The antibiotic resistance patterns divided the strains into 100 unique groups, indicating that the strains were very diverse. Isolates from each antibiotic resistance group were characterized in more detail by using the repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique with ERIC primers. PCR products were analyzed by agarose gel electrophoresis. The genetic relatedness of 100 bacterial fingerprints, determined by using Pearson product moment similarity coefficient, showed that the isolates could be divided into four clusters, with similarity values ranging from 5-99%. While many isolates were genetically diverse, others were clonal in nature Additionally, the arsenic-resistant isolates were examined for the presence of arsenic resistance (ars) genes by using PCR, and 30% of the isolates were found to carry an arsenate reductase encoded by the arsC gene. | 2010 | 20134249 |
| 2803 | 1 | 0.9998 | Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system. Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities. | 2017 | 29160218 |
| 3603 | 2 | 0.9998 | Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a swine lagoon with low antibiotic impact. Tetracycline resistance has been extensively studied and shown to be widespread. A number of previous studies have clearly demonstrated that a variety of tetracycline resistance genes are present in swine fecal material, treatment lagoons, and the environments surrounding concentrated animal feeding operations (CAFOs). The diversity of tetracycline resistance within a swine lagoon located at a CAFO that used only bacitricin methylene disalicylate as an antibiotic was evaluated by screening 85 tetracycline-resistant isolates for the presence of 18 different genes by performing PCR with primers that target tetracycline efflux genes of Gram-negative bacteria and ribosomal protection proteins. In addition, partial 16S rRNA sequences from each of these isolates were sequenced to determine the identity of these isolates. Of the 85 isolates examined, 17 may represent potential novel species based on BLAST results. Greater than 50% of the isolates (48 out of 85) were found to not contain targeted tet efflux genes. Though minimum inhibitory concentrations ranged widely (16 - >256 mg/L), these values did not give an indication of the tet genes present. Ten new genera were identified that contain at least one tet efflux gene. Five other genera possessed tet efflux genes that were not found in these organisms previously. Interestingly, none of the isolates possessed any of the selected ribosomal protection protein genes. Though tetracycline resistance was found in bacteria isolated from a swine CAFO lagoon, it appears that the limited antibiotic use at this CAFO might have impacted the presence and diversity of tetracycline resistance genes. | 2007 | 18059563 |
| 2801 | 3 | 0.9998 | Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance. This paper unravels the occurrence of plasmid-mediated antibiotic resistance in association with tolerance to heavy metals among clinically relevant bacteria isolated from sewage wastewater. The bacteria isolated were identified following conventional phenotypic and/or molecular methods, and were subjected to multiple-antibiotic resistance (MAR) profiling. The isolates were tested against the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). SDS-PAGE and agarose gel electrophoretic analyses were performed, respectively, for the characterization of heavy metal stress protein and R-plasmid among the isolated bacteria. Principal component analysis was applied in determining bacterial resistance to antibiotics and heavy metals. Both lactose-fermenting ( Escherichia coli ) and non-fermenting ( Acinetobacter baumannii and Pseudomonas putida ) Gram-negative bacterial strains were procured, and showed MAR phenotypes with respect to three or more antibiotics, along with resistance to the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). The Gram-positive bacteria, Enterococcus faecalis , isolated had 'ampicillin-kanamycin-nalidixic acid' resistance. The bacterial isolates had MAR indices of 0.3-0.9, indicating their ( E. faecalis , E. coli , A. baumannii and P. putida ) origin from niches with high antibiotic pollution and human faecal contamination. The Gram-negative bacteria isolated contained a single plasmid (≈54 kb) conferring multiple antibiotic resistance, which was linked to heavy metal tolerance; the SDS-PAGE analysis demonstrated the expression of heavy metal stress proteins (≈59 and ≈10 kDa) in wastewater bacteria with a Cd(2+) stressor. The study results grant an insight into the co-occurrence of antibiotic resistance and heavy metal tolerance among clinically relevant bacteria in sewage wastewater, prompting an intense health impact over antibiotic usage. | 2020 | 32974572 |
| 3613 | 4 | 0.9998 | Copper and Zinc Tolerance in Bacteria Isolated from Fresh Produce. The continued agricultural exposure of bacteria to metals such as copper and zinc may result in an increased copper tolerance through the food chain. The aim of this study was to determine the Cu and Zn tolerance of bacteria from fresh produce (cucumber, zucchini, green pepper, tomato, lettuce, vegetable salad, broccoli, cabbage, carrot, green onion, onion, and mango). Isolates (506 aerobic mesophiles) from 12 different food produce products were tested for growth in a range of Cu and Zn concentrations. Selected isolates were identified using 16S rDNA sequencing, and the presence of metal resistance genes was studied using PCR amplification. More than 50% of the isolates had MICs for copper sulfate greater than 16 mM, and more than 40% had MICs greater than 4 mM for zinc chloride. Isolates with high levels of tolerance to Cu and Zn were detected in all the produce products investigated. A selection of 51 isolates with high MICs for both Cu and Zn were identified as belonging to the genera Pseudomonas (28), Enterobacter (7), Serratia (4), Leclercia (1), Bacillus (10), and Paenibacillus (1). A study of the genetic determinants of resistance in the selected gram-negative isolates revealed a high incidence of genes from the pco multicopper oxidase cluster, from the sil cluster involved in Cu and silver resistance, and from the chromate resistance gene chrB. A high percentage carried both pco and sil. The results suggest that Cu and Zn tolerance, as well as metal resistance genes, is widespread in bacteria from fresh produce. | 2017 | 28467185 |
| 2866 | 5 | 0.9998 | Characterization of tetracycline-resistant bacteria in an urbanizing subtropical watershed. AIMS: The objective of this study was to determine whether varying levels of urbanization influence the dominant bacterial species of mildly resistant (0·03 mmol l(-1) tetracycline) and highly resistant (0·06 mmol l(-1) tetracycline) bacteria in sediment and water. Also, the level of urbanization was further evaluated to determine whether the diversity of tetracycline resistance genes present in the isolates and the capability of transferring their resistance were influenced. METHODS AND RESULTS: Sediment and water samples collected from five sampling sites were plated in triplicate on nutrient agar plates with a mild dose (0·03 mmol l(-1) ) and a high dose (0·06 mmol l(-1) ) of tetracycline. Five colonies from each plate plus an additional five from each triplicate group were randomly selected and isolated on nutrient agar containing 0·03 mmol l(-1) tetracycline (400 isolates). The isolates were identified by 16S rRNA gene sequencing and comparison to GenBank using blast. The isolates were also screened for 15 tetracycline resistance genes using a multiplex PCR assay and their ability to transfer resistance through conjugation experiments using a kanamycin-resistant Escherichia. coli K-12 strain labelled with a green fluorescent protein gene. Results from this study indicate that the dominant resistant organisms in this watershed are Acinetobacter spp., Chryseobacterium spp., Serratia spp., Pseudomonas spp., Aeromonas spp. and E. coli. All of these organisms are Gram negative and are closely related to pathogenic species. A majority of the isolates (66%) were capable of transferring their resistance, and there was a greater incidence of tet resistance transfer with increasing urbanization. Also, it was determined that the dominant resistance genes in the watershed are tet(W) and tet(A). CONCLUSION: Urbanization significantly affected dominant tetracycline-resistant bacteria species, but did not affect dominant resistance genes. There was correlation between increased urbanization with an increase in the ability to transfer tetracycline resistance. This indicates that urban areas may select for bacterial species that are capable of transferring resistance. SIGNIFICANCE AND IMPACT OF STUDY: These results indicate that urbanization influences the occurrence of tetracycline-resistant bacteria and the potential for transfer of resistance genes. | 2013 | 23773226 |
| 3122 | 6 | 0.9998 | Hybrid sequence-based analysis reveals the distribution of bacterial species and genes in the oral microbiome at a high resolution. Bacteria in the oral microbiome are poorly identified owing to the lack of established culture methods for them. Thus, this study aimed to use culture-free analysis techniques, including bacterial single-cell genome sequencing, to identify bacterial species and investigate gene distribution in saliva. Saliva samples from the same individual were classified as inactivated or viable and then analyzed using 16S rRNA sequencing, metagenomic shotgun sequencing, and bacterial single-cell sequencing. The results of 16S rRNA sequencing revealed similar microbiota structures in both samples, with Streptococcus being the predominant genus. Metagenomic shotgun sequencing showed that approximately 80 % of the DNA in the samples was of non-bacterial origin, whereas single-cell sequencing showed an average contamination rate of 10.4 % per genome. Single-cell sequencing also yielded genome sequences for 43 out of 48 wells for the inactivated samples and 45 out of 48 wells for the viable samples. With respect to resistance genes, four out of 88 isolates carried cfxA, which encodes a β-lactamase, and four isolates carried erythromycin resistance genes. Tetracycline resistance genes were found in nine bacteria. Metagenomic shotgun sequencing provided complete sequences of cfxA, ermF, and ermX, whereas other resistance genes, such as tetQ and tetM, were detected as fragments. In addition, virulence factors from Streptococcus pneumoniae were the most common, with 13 genes detected. Our average nucleotide identity analysis also suggested five single-cell-isolated bacteria as potential novel species. These data would contribute to expanding the oral microbiome data resource. | 2024 | 38708423 |
| 3593 | 7 | 0.9998 | Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities. The occurrence of d-Ala : d-Lac ligase genes homologous to glycopeptide resistance vanA was studied in samples of agricultural (n=9) and garden (n=3) soil by culture-independent methods. Cloning and sequencing of nested degenerate PCR products obtained from soil DNA revealed the occurrence of d-Ala : d-Ala ligase genes unrelated to vanA. In order to enhance detection of vanA-homologous genes, a third PCR step was added using primers targeting vanA in soil Paenibacillus. Sequencing of 25 clones obtained by this method allowed recovery of 23 novel sequences having 86-100% identity with vanA in enterococci. Such sequences were recovered from all agricultural samples as well as from two garden samples with no history of organic fertilization. The results indicated that soil is a rich and assorted reservoir of genes closely related to those conferring glycopeptide resistance in clinical bacteria. | 2006 | 16734783 |
| 5935 | 8 | 0.9998 | Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes. | 2012 | 23108290 |
| 2804 | 9 | 0.9998 | Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. The aim of this study was to evaluate the resistance to ten antimicrobial agents and the presence of bla ( TEM1 ) gene of Gram-negative bacteria isolated from three natural oligotrophic lakes with varying degrees of anthropogenic influence. A total of 272 indigenous bacteria were recovered on eosin methylene blue medium; they were characterized for antimicrobial resistance and identified taxonomically by homology search and phylogenetic comparisons. Based on 16S ribosomal RNA sequences analysis, 97% of the isolates were found to be Gram-negative bacteria; they belonged to 11 different genera. Members of the genera Acinetobacter, Enterobacter, and Pseudomonas predominated. Most of the bacteria were resistant to at least one antimicrobial. The incidence of resistance to beta-lactams, chloramphenicol, and mercury was high, whereas resistance to tetracycline, aminoglycosides, and nalidixic acid was low. There was a great frequency of multiple resistances among the isolates from the three lakes, although no significant differences were found among the disturbed and reference lakes. The ampicillin resistance mechanism of 71% of the isolates was due to the gene bla ( TEM1 ). Our study suggests that multiresistant Gram-negative bacteria and the bla ( TEM1 ) gene are common in freshwater oligotrophic lakes, which are subject to different levels of anthropogenic inputs. | 2009 | 19504148 |
| 2829 | 10 | 0.9998 | Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. The prevalence of selected streptomycin (Sm)-resistance genes, i.e. aph (3''), aph (6)-1d, aph (6)-1c, ant (3'') and ant (6), was assessed in a range of pristine as well as polluted European habitats. These habitats included bulk and rhizosphere soils, manure from farm animals, activated sludge from wastewater treatment plants and seawater. The methods employed included assessments of the prevalence of the genes in habitat-extracted DNA by PCR, followed by hybridisation with specific probes, Sm-resistant culturable bacteria and exogenous isolation of plasmids carrying Sm-resistance determinants. The direct DNA-based analysis showed that aph (6)-1d genes were most prevalent in the habitats examined. The presence of the other four Sm-modifying genes was demonstrated in 58% of the tested habitats. A small fraction of the bacterial isolates (8%) did not possess any of the selected Sm-modifying genes. These isolates were primarily obtained from activated sludge and manure. The presence of Sm-modifying genes in the isolates often coincided with the presence of IncP plasmids. Exogenous isolation demonstrated the presence of plasmids of 40-200 kb in size harbouring Sm-resistance genes from all the environments tested. Most plasmids were shown to carry the ant (3'') gene, often in combination with other Sm-resistance genes, such as aph (3'') and aph (6)-1d. The most commonly found Sm-modifying gene on mobile genetic elements was ant (3''). Multiple Sm-resistance genes on the same genetic elements appeared to be the rule rather than the exception. It is concluded that Sm-resistance genes are widespread in the environmental habitats studied and often occur on mobile genetic elements and ant (3'') was most often encountered. | 2002 | 19709288 |
| 2802 | 11 | 0.9998 | First Description of Various Bacteria Resistant to Heavy Metals and Antibiotics Isolated from Polluted Sites in Tunisia. Environmental bacteria belonging to various families were isolated from polluted water collected from ten different sites in Tunisia. Sites were chosen near industrial and urban areas known for their high degree of pollution. The aim of this study was to investigate cross-resistance between heavy metals (HM), i.e., silver, mercury and copper (Ag, Hg, and Cu), and antibiotics. In an initial screening, 80 isolates were selected on ampicillin, and 39 isolates, retained for further analysis, could grow on a Tris-buffered mineral medium with gluconate as carbon source. Isolates were identified based on their 16S rRNA gene sequence. Results showed the prevalence of antibiotic resistance genes, especially all isolates harbored the bla (TEM) gene. Some of them (15.38%) harbored bla (SHV). Moreover, several were even ESBLs and MBLs-producers, which can threaten the human health. On the other hand, 92.30%, 56.41%, and 51.28% of the isolates harbored the heavy metals resistance genes silE, cusA, and merA, respectively. These genes confer resistance to silver, copper, and mercury. A cross-resistance between antibiotics and heavy metals was detected in 97.43% of our isolates. | 2021 | 34335797 |
| 2796 | 12 | 0.9998 | Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps. | 2007 | 17298370 |
| 2805 | 13 | 0.9998 | Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL(-1)), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2-1,024 μg mL(-1)). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. | 2012 | 22972388 |
| 2833 | 14 | 0.9997 | Heavy metal resistance genes and plasmid-mediated quinolone resistance genes in Arthrobacter sp. isolated from Brazilian soils. Arthrobacter sp. are Gram-positive bacilli commonly obtained from soil and in the hospital environment. These species have been reported to cause several types of infection. Heavy metals are a threat to the ecological system due to their high-levels of toxicity and the fluoroquinolones are antimicrobials widely used for the treatment of different bacterial infections. The aim of this study was to investigate the resistance to fluoroquinolone and heavy metals, the presence of plasmid-mediated resistance (PMQR) genes and heavy metals resistance (HMR) genes and the presence of plasmids in Arthrobacter sp. obtained from Brazilian soils. Bacterial isolation was performed using soil samples from different Brazilian regions. The bacterial identification was performed by 16S rRNA gene sequencing. The resistance profile for fluoroquinolones and heavy metals was determined by MIC. Several PMQR and HMR genes and plasmid families were investigated by PCR. Eight isolates were obtained from soil samples from different cultivations and regions of Brazil. All isolates were resistant to all fluoroquinolones, cadmium, cobalt and zinc and the majority to copper. Among the PMQR genes, the qepA (4) was the most prevalent, followed by qnrS (3), qnrB (3), oqxB (2) and oqxA (1). Among the HMR genes, the copA was detected in all isolates and the czcA in two isolates. The replication origin of the ColE-like plasmid was detected in all isolates; however, no plasmid was detected by extraction. The association of resistance to heavy metals and antimicrobials is a threat to the environmental balance and to human health. There are no studies reporting the association of PMQR and HMR genes in bacteria belonging to the genus Arthrobacter. To the best of our knowledge, this is the first report of qnrB, qepA, oqxA and oqxB in Arthrobacter species. | 2019 | 31129890 |
| 5639 | 15 | 0.9997 | Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Quaternary ammonium compounds (QACs) are widely used as disinfectant in medical and food environments. There is a growing concern about the increasing incidence of disinfectant-resistant microorganisms from food. Disinfectant-resistant lactic acid bacteria (LAB) may survive disinfection and cause spoilage problems. Moreover, resistant LAB may potentially act as a reservoir for resistance genes. A total number of 320 LAB from food industry and meat were screened for resistance to the QAC benzalkonium chloride (BC). Out of 320 strains, five strains (1.5%) were considered to be resistant and 56 (17.5%) were tolerant to BC. The resistant strains were isolated from food processing equipment after disinfection. The resistant, tolerant, and some sensitive control bacteria were examined for susceptibility to 18 different antibiotics, disinfectants, and dyes using disc agar diffusion test and microdilution method. Little systematic cross-resistance between BC and any of the antimicrobial agents tested were detected except for gentamycin and chlorhexidine. A BC-tolerant strain was much easier to adapt to higher levels of BC as compared to a BC-sensitive strain. No known gram-positive QAC resistance genes (qacA/B, qacC, qacG, and qacH) were detected in the BC-resistant strains. Identification to species level of the BC-resistant isolates was carried out by comparative analysis of 16S-rDNA sequencing. In conclusion, resistance to BC is not frequent in LAB isolated from food and food environments. Resistance may occur after exposure to BC. The BC resistant isolates showed no cross-resistance with other antimicrobial compounds, except for gentamycin and chlorhexidine. Nevertheless, BC-resistant LAB may be isolated after disinfection and may contribute to the dissemination of resistance. | 2001 | 11310806 |
| 2863 | 16 | 0.9997 | Detection of Aminoglycoside Resistant Bacteria in Sludge Samples From Norwegian Drinking Water Treatment Plants. Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6')-Ib, AAC(3')-II, APH(3')-II, APH(3')-III, could only explain the resistance of a few of the isolates selected for testing. aph(3')-II was detected in 1.6% of total isolates, aac(6')-Ib and aph(3')-III in 0.8%, while aac(3')-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment. | 2019 | 30918503 |
| 3361 | 17 | 0.9997 | The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. AIM: Previous analysis of tet39 suggests it may be present in other bacterial species. Hence, we investigated the host range of tet39 among bacterial from a poultry waste polluted river in Southwestern Nigeria. METHODS AND RESULTS: Thirteen resistant bacterial isolated from the water and sediment of the polluted river was investigated for the presence of tetracycline resistance genes tetA, tetB, tetC, tet39 and the transposon integrase gene of the Tn916/1545 family by PCR. While tetA, tetB, tetC and integrase genes cannot be detected in any of the organisms, tet39 was detected in eight of the tested organisms including three Gram-positive species. Sequence analysis showed the genes have high sequence identities (> or =99%) with tet39 of Acinetobacter sp. LUH5605, the first and only bacterial genus from which the gene has been reported to date. This is a novel observation. CONCLUSIONS: This study shows that apart from Acinetobacter, tet39 is present in other bacterial species tested in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study adds to available information on the occurrence and distribution of tet39 among environmental bacteria and suggests that the gene has a broader host range than previously reported. | 2009 | 19196439 |
| 5644 | 18 | 0.9997 | Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria. | 2023 | 37317216 |
| 2797 | 19 | 0.9997 | Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. We sought to determine the distribution of resistance and the tetracycline resistance genes among bacteria isolated from a swine confined animal feeding facility where tetracycline-containing feed had been in use for over 20 years. Samples collected from feed, hogs, hog houses, waste lagoon, soil, surface water and well water were screened for the presence of (a) resistant Escherichia coli and enterococci and (b) tetracycline-resistant strains of all species. Genomic DNA was extracted from the latter strain collection and fragments from 16S rDNA and ten tetracycline resistance genes (tetA, tetB, tetC, tetE, tetH, tetL, tetM, tetS, tetT and rumB) were polymerase chain reaction-amplified and a partial nucleotide sequence was obtained. In this environment, 77% of E. coli and 68% of enterococci isolated were tetracycline resistant. Tetracycline resistance was found in 26 different bacterial genera and in 60 species. Single resistance gene alleles (as defined by nucleotide sequence) were present in multiple species. There was evidence of gene recombination and multiple different tetracycline resistance genes were present in single bacterial isolates. These data provide further evidence for the widespread distribution of resistance genes in microbial populations in settings in which there is ongoing subtherapeutic antimicrobial use. | 2007 | 17287111 |