# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3602 | 0 | 1.0000 | Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Phylogenetic analysis of tetracycline resistance genes, which confer resistance due to the efflux of tetracycline from the cell catalyzed by drug:H(+) antiport and share a common structure with 12 transmembrane segments (12-TMS), suggested the monophyletic origin of these genes. With a high degree of confidence, this tet subcluster unifies 11 genes encoding tet efflux pumps and includes tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(Y), tet(Z), and tet(30). Phylogeny-aided alignments were used to design a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources. After rigorous validation with the characterized control tet templates, this primer set was used to determine the genotype of the corresponding tetracycline resistance genes in total DNA of swine feed and feces and in the lagoons and groundwater underlying two large swine production facilities known to be impacted by waste seepage. The compounded tet fingerprint of animal feed was found to be tetCDEHZ, while the corresponding fingerprint of total intestinal microbiota was tetBCGHYZ. Interestingly, the tet fingerprints in geographically distant waste lagoons were identical (tetBCEHYZ) and were similar to the fecal fingerprint at the third location mentioned above. Despite the sporadic detection of chlortetracycline in waste lagoons, no auxiliary diversity of tet genes in comparison with the fecal diversity could be detected, suggesting that the tet pool is generated mainly in the gut of tetracycline-fed animals, with a negligible contribution from selection imposed by tetracycline that is released into the environment. The tet efflux genes were found to be percolating into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. With yet another family of tet genes, this study confirmed our earlier findings that the antibiotic resistance gene pool generated in animal production systems may be mobile and persistent in the environment with the potential to enter the food chain. | 2002 | 11916697 |
| 3603 | 1 | 0.9998 | Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a swine lagoon with low antibiotic impact. Tetracycline resistance has been extensively studied and shown to be widespread. A number of previous studies have clearly demonstrated that a variety of tetracycline resistance genes are present in swine fecal material, treatment lagoons, and the environments surrounding concentrated animal feeding operations (CAFOs). The diversity of tetracycline resistance within a swine lagoon located at a CAFO that used only bacitricin methylene disalicylate as an antibiotic was evaluated by screening 85 tetracycline-resistant isolates for the presence of 18 different genes by performing PCR with primers that target tetracycline efflux genes of Gram-negative bacteria and ribosomal protection proteins. In addition, partial 16S rRNA sequences from each of these isolates were sequenced to determine the identity of these isolates. Of the 85 isolates examined, 17 may represent potential novel species based on BLAST results. Greater than 50% of the isolates (48 out of 85) were found to not contain targeted tet efflux genes. Though minimum inhibitory concentrations ranged widely (16 - >256 mg/L), these values did not give an indication of the tet genes present. Ten new genera were identified that contain at least one tet efflux gene. Five other genera possessed tet efflux genes that were not found in these organisms previously. Interestingly, none of the isolates possessed any of the selected ribosomal protection protein genes. Though tetracycline resistance was found in bacteria isolated from a swine CAFO lagoon, it appears that the limited antibiotic use at this CAFO might have impacted the presence and diversity of tetracycline resistance genes. | 2007 | 18059563 |
| 3604 | 2 | 0.9998 | Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. RNA methylase genes are common antibiotic resistance determinants for multiple drugs of the macrolide, lincosamide, and streptogramin B (MLS(B)) families. We used molecular methods to investigate the diversity, distribution, and abundance of MLS(B) methylases in waste lagoons and groundwater wells at two swine farms with a history of tylosin (a macrolide antibiotic structurally related to erythromycin) and tetracycline usage. Phylogenetic analysis guided primer design for quantification of MLS(B) resistance genes found in tylosin-producing Streptomyces (tlr(B), tlr(D)) and commensal/pathogenic bacteria (erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q)). The near absence of tlr genes at these sites suggested a lack of native antibiotic-producing organisms. The gene combination erm(ABCF) was found in all lagoon samples analyzed. These four genes were also detected with high frequency in wells previously found to be contaminated by lagoon leakage. A weak correlation was found between the distribution of erm genes and previously reported patterns of tetracycline resistance determinants, suggesting that dissemination of these genes into the environment is not necessarily linked. Considerations of gene origins in history (i.e., phylogeny) and gene distributions in the landscape provide a useful "molecular ecology" framework for studying environmental spread of antibiotic resistance. | 2010 | 19924466 |
| 3577 | 3 | 0.9997 | Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes. | 2022 | 35992677 |
| 3704 | 4 | 0.9997 | Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms. | 2009 | 18677528 |
| 4571 | 5 | 0.9997 | Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood. | 2014 | 24956077 |
| 3607 | 6 | 0.9997 | Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics. Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings. | 2009 | 19857138 |
| 3122 | 7 | 0.9997 | Hybrid sequence-based analysis reveals the distribution of bacterial species and genes in the oral microbiome at a high resolution. Bacteria in the oral microbiome are poorly identified owing to the lack of established culture methods for them. Thus, this study aimed to use culture-free analysis techniques, including bacterial single-cell genome sequencing, to identify bacterial species and investigate gene distribution in saliva. Saliva samples from the same individual were classified as inactivated or viable and then analyzed using 16S rRNA sequencing, metagenomic shotgun sequencing, and bacterial single-cell sequencing. The results of 16S rRNA sequencing revealed similar microbiota structures in both samples, with Streptococcus being the predominant genus. Metagenomic shotgun sequencing showed that approximately 80 % of the DNA in the samples was of non-bacterial origin, whereas single-cell sequencing showed an average contamination rate of 10.4 % per genome. Single-cell sequencing also yielded genome sequences for 43 out of 48 wells for the inactivated samples and 45 out of 48 wells for the viable samples. With respect to resistance genes, four out of 88 isolates carried cfxA, which encodes a β-lactamase, and four isolates carried erythromycin resistance genes. Tetracycline resistance genes were found in nine bacteria. Metagenomic shotgun sequencing provided complete sequences of cfxA, ermF, and ermX, whereas other resistance genes, such as tetQ and tetM, were detected as fragments. In addition, virulence factors from Streptococcus pneumoniae were the most common, with 13 genes detected. Our average nucleotide identity analysis also suggested five single-cell-isolated bacteria as potential novel species. These data would contribute to expanding the oral microbiome data resource. | 2024 | 38708423 |
| 3358 | 8 | 0.9997 | Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments. | 2021 | 33515651 |
| 3705 | 9 | 0.9997 | Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. The occurrence of 22 bacterial human virulence genes (encoding toxins, adhesins, secretion systems, regulators of virulence, inflammatory mediators, and bacterial resistance) in beech wood soil, roadside soil, organic agricultural soil, and freshwater biofilm was investigated by nested PCR. The presence of clinically relevant bacterial groups known to possess virulence genes was tested by PCR of 16S and 23S rRNA genes. For each of the virulence genes detected in the environments, sequencing and NCBI BLAST analysis confirmed the identity of the PCR products. The virulence genes showed widespread environmental occurrence, as 17 different genes were observed. Sixteen genes were detected in beech wood soil, and 14 were detected in roadside and organic agricultural soils, while 11 were detected in the freshwater biofilm. All types of virulence traits were represented in all environments; however, the frequency at which they were detected was variable. A principal-component analysis suggested that several factors influenced the presence of the virulence genes; however, their distribution was most likely related to the level of contamination by polycyclic aromatic hydrocarbons and pH. The occurrence of the virulence genes in the environments generally did not appear to be the result of the presence of clinically relevant bacteria, indicating an environmental origin of the virulence genes. The widespread occurrence of the virulence traits and the high degree of sequence conservation between the environmental and clinical sequences suggest that soil and freshwater environments may constitute reservoirs of virulence determinants normally associated with human disease. | 2013 | 23835169 |
| 3245 | 10 | 0.9997 | From Metagenomes to Functional Expression of Resistance: floR Gene Diversity in Bacteria from Salmon Farms. Background. The increase in antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is related to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the main source of antibiotics in coastal waters. In this work, we aimed to characterize the genetic and phenotypic profiles of antibiotic resistance in bacterial communities from salmon farms. Methods. Bacterial metagenomes from an intensive aquaculture zone in southern Chile were sequenced, and the composition, abundance and sequence of antibiotic resistance genes (ARGs) were analyzed using assembled and raw read data. Total DNA from bacterial communities was used as a template to recover floR gene variants, which were tested by heterologous expression and functional characterization of phenicol resistance. Results. Prediction of ARGs in salmon farm metagenomes using more permissive parameters yielded significantly more results than the default Resistance Gene Identifier (RGI) software. ARGs grouped into drug classes showed similar abundance profiles to global ocean bacteria. The floR gene was the most abundant phenicol-resistance gene with the lowest gene counts, showing a conserved sequence although with variations from the reference floR. These differences were recovered by RGI prediction and, in greater depth, by mapping reads to the floR sequence using SNP base-calling. These variants were analyzed by heterologous expression, revealing the co-existence of high- and low-resistance sequences in the environmental bacteria. Conclusions. This study highlights the importance of combining metagenomic and phenotypic approaches to study the genetic variability in and evolution of antibiotic-resistant bacteria associated with salmon farms. | 2025 | 40001366 |
| 5289 | 11 | 0.9997 | Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems. | 2016 | 27065407 |
| 3606 | 12 | 0.9997 | Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. The widespread use of antibiotics for medical and veterinary purposes has led to an increase of microbial resistance. The antibiotic resistance of pathogenic bacteria has been studied extensively. However, antibiotics are not only selective for pathogens: they also affect all members of the gut microbiota. These microorganisms may constitute a reservoir of genes carrying resistance to specific antibiotics. This study was designed to characterize the gut microbiota with regard to the presence of genes encoding tetracycline resistance proteins (tet) in the gut of healthy exclusively breast-fed infants and their mothers. For this purpose we determined the prevalence of genes encoding ribosomal protection proteins (tet M, tet W, tet O, tet S, tet T and tet B) by PCR and characterized the gut microbiota by FISH in stools of infants and their mothers. The gene tet M was found in all the breast-fed infants and their mothers. tet O was found in all of the mothers' samples, whilst only 35% of the infants harboured this gene. tet W was less frequently found (85% of the mothers and 13% of the infants). None of the other genes analysed was found in any sample. Our results suggest that genes carrying antibiotic resistance are common in the environment, as even healthy breast-fed infants with no direct or indirect previous exposure to antibiotics harbour these genes. | 2006 | 16965348 |
| 3701 | 13 | 0.9997 | Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Copper-derived compounds are often used in olive tree farms. In a previous study, a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline. Significant associations were detected between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline resistance mechanisms. A significant association was also detected between zntA (coding for a Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such genetic traits by exposure to metals. | 2020 | 32756388 |
| 3697 | 14 | 0.9997 | Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside) collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M), tet(L), tet(O)] and macrolide [erm(A), erm(B) and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M) and tet(L) in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin) highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O), erm(B) and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an underestimated health risk and deserves further investigation. | 2013 | 23638152 |
| 3597 | 15 | 0.9997 | Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria. | 2001 | 11157217 |
| 3600 | 16 | 0.9997 | Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method. | 2004 | 15305923 |
| 3531 | 17 | 0.9997 | Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria. | 2019 | 31536878 |
| 4674 | 18 | 0.9997 | Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures. | 2015 | 26147573 |
| 3872 | 19 | 0.9997 | Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. | 2014 | 24636906 |