Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
358601.0000Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species. With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. Limosibacillus reuteri and Lacticaseibacillus paracasei exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while Lactobacillus gasseri showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. Lactiplantibacillus plantarum, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations.202439403731
600110.9997Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers.200919135099
336820.9997Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica). Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.201626683492
575730.9997The expression regulation of recA gene and bacterial class 2 integron-associated genes induced by antibiotics. OBJECTIVE: To investigate the effects and mechanisms of common antibiotics induction on the expression of class 2 integron integrase and variable region resistance genes in bacteria, as well as potential structural mutations. METHODS: Clinical isolates containing non-functional class 2 integrons and functional class 2 integrons were selected. Strains containing non-functional class 2 integrons or functional class 2 integrons were constructed using isolated DNA templates. These strains were subjected to continuous induction with drug concentrations of 1/2 MIC and 1/4 MIC (ciprofloxacin, ampicillin, and kanamycin) and a concentration of 0.2 μg/ml (mitomycin C) over 8 days. The relative expression levels of relevant genes were measured on days 1, 3, and 8. Drug resistance in the experimental strains was assessed before and after induction to identify any differences. Finally, the sequence of the non-functional class 2 integron integrase gene was analyzed for structural changes that occurred as a result of induction. RESULTS: All drugs selected in this study increased the relative expression levels of recA, intI2, dfrA1, sat2, and aadA1. Significant differences in inductive abilities were observed among the drugs. The 1/2 MIC concentrations were more effective than 1/4 MIC concentrations in increasing the relative expression levels of target genes and enhancing the resistance of the experimental strains. The relative expression levels of recA, intI2, and dfrA1 rose on day 1, peaked on day 3, and slightly declined by day 8. Induced strains exhibited increased resistance to the drugs, with the most significant changes observed in the clinical isolates, particularly concerning CIP resistance. Notably, clinical isolate 7b induced with 1/2 MIC KAN exhibited the loss of one base at position 12bp in the integrase sequence. However, none of the four drugs induced mutations at the 444 bp position of class 2 integrons. CONCLUSION: Sub-MIC concentrations of drugs have been shown to induce an increase in the relative expression level of the SOS response-related gene recA, as well as the integrase and resistance genes of class 2 integrons. Continuous induction leads to sustained upregulation of these genes, which stabilizes or slightly decreases upon reaching a plateau. However, the capacity of different drugs to induce expression varies significantly. Short-term antibiotic exposure did not result in critical mutations that convert class 2 integrons into functional forms.202540950603
599540.9997In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. The ability of 14 Lactobacillus strains, isolated from fermented dry sausages, to transfer tetracycline resistance encoded by tet(M) through conjugation was examined using filter mating experiments. Seven out of 14 tetracycline-resistant Lactobacillus isolates were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from 10(-4) to 10(-6) transconjugants per recipient. Two of these strains could also transfer their resistance to Lactococcus lactis subsp. lactis, whereas no conjugal transfer to a Staphylococcus aureus recipient was found. These data suggest that meat lactobacilli might be reservoir organisms for acquired resistance genes that can be spread to other lactic acid bacteria. In order to assess the risk of this potential hazard, the magnitude of transfer along the food chain merits further research.200312900030
472350.9997Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management.202539536720
565160.9997Class 1 integron causes vulnerability to formaldehyde in Escherichia coli. In this study, the relationships of integron 1 element, formaldehyde dehydrogenase, and orfF genes with the level of formaldehyde resistance of isolated E. coli were investigated. E. coli bacteria were isolated from apparently healthy and colibacillosis-affected broilers of Fars Province, Iran. Formaldehyde resistance level and the presence of genetic markers were measured using MIC, and PCR tests, respectively. The prevalence of integron 1 element, orfF, and formaldehyde dehydrogenase genes in E. coli isolates were 61%, 8%, and 94%, respectively. In addition, according to our cut off definition, 15% and 85% of isolates were resistant and sensitive to formaldehyde, respectively. None of the genes had a statistically significant relationship with the formaldehyde resistance; however, the isolates containing integron 1 were significantly more sensitive to formaldehyde in the MIC test than those without integron 1. Integron 1 gene cassette could carry some bacterial surface proteins and porins with different roles in bacterial cells. Formaldehyde could also interfere with the protein functions by alkylating and cross-linking, and this compound would affect bacterial cell surface proteins in advance. Through an increase in the cell surface proteins, the presence of integron 1 gene cassette might make E. coli more sensitive to formaldehyde. As integron 1 was always involved in increasing bacterial resistance to antibiotics and disinfectants such as QACs, this is the first report of bacterial induction of sensitivity to a disinfectant through integron 1. Finally, integron 1 does not always add an advantage to E. coli bacteria, and it could be assumed as a cause of vulnerability to formaldehyde.202134148112
353170.9997Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria.201931536878
280180.9997Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance. This paper unravels the occurrence of plasmid-mediated antibiotic resistance in association with tolerance to heavy metals among clinically relevant bacteria isolated from sewage wastewater. The bacteria isolated were identified following conventional phenotypic and/or molecular methods, and were subjected to multiple-antibiotic resistance (MAR) profiling. The isolates were tested against the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). SDS-PAGE and agarose gel electrophoretic analyses were performed, respectively, for the characterization of heavy metal stress protein and R-plasmid among the isolated bacteria. Principal component analysis was applied in determining bacterial resistance to antibiotics and heavy metals. Both lactose-fermenting ( Escherichia coli ) and non-fermenting ( Acinetobacter baumannii and Pseudomonas putida ) Gram-negative bacterial strains were procured, and showed MAR phenotypes with respect to three or more antibiotics, along with resistance to the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). The Gram-positive bacteria, Enterococcus faecalis , isolated had 'ampicillin-kanamycin-nalidixic acid' resistance. The bacterial isolates had MAR indices of 0.3-0.9, indicating their ( E. faecalis , E. coli , A. baumannii and P. putida ) origin from niches with high antibiotic pollution and human faecal contamination. The Gram-negative bacteria isolated contained a single plasmid (≈54 kb) conferring multiple antibiotic resistance, which was linked to heavy metal tolerance; the SDS-PAGE analysis demonstrated the expression of heavy metal stress proteins (≈59 and ≈10 kDa) in wastewater bacteria with a Cd(2+) stressor. The study results grant an insight into the co-occurrence of antibiotic resistance and heavy metal tolerance among clinically relevant bacteria in sewage wastewater, prompting an intense health impact over antibiotic usage.202032974572
359490.9997Directed Recovery and Molecular Characterization of Antibiotic Resistance Plasmids from Cheese Bacteria. Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain.202134360567
5634100.9997Effects of antibiotic use in sows on resistance of E. coli and Salmonella enterica Typhimurium in their offspring. To determine effects of exposure of parental animals to antibiotics on antibiotic resistance in bacteria of offspring, sows were either treated or not treated with oxytetracycline prior to farrowing and their pigs were challenged with Salmonella enterica Typhimurium and treated or not treated with oxytetracycline and apramycin. Fecal Escherichia coli were obtained from sows, and E. coli and salmonella were recovered from pigs. Antibiotic resistance patterns of isolates were determined using a minimum inhibitory concentration (MIC) analysis. Polymerase chain reaction (PCR) and electroporation were used to characterize the genetic basis for the resistance and to determine the location of resistance genes. Treatments had little effect on resistance of the salmonella challenge organism. The greatest resistance to apramycin occurred in E. coli from pigs treated with apramycin and whose sows had earlier exposure to oxytetracycline. Resistance to oxytetracycline was consistently high throughout the study in isolates from all pigs and sows; however, greater resistance was noted in pigs nursing sows that had previous exposure to that drug. The aac(3)-IV gene, responsible for apramycin resistance, was found in approximately 90% of apramycin-resistant isolates and its location was determined to be on plasmids. Several resistant E. coli bio-types were found to contain the resistance gene. These results indicate that resistance to apramycin and oxytetracycline in E. coli of pigs is affected by previous use of oxytetracycline in sows.200516156702
4908110.9997Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.202438191970
4678120.9997Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.202134277757
5650130.9997High-level trimethoprim resistance in urinary bacteria. The results of a three year evaluation of the incidence and type of trimethoprim resistance in pathogens responsible for significant bacteriuria in a general hospital in Edinburgh UK, are presented and compared to results of a previous study. In the present study, trimethoprim resistance was 50% more frequent in bacteria isolated from men and nearly twice as frequent in bacteria from elderly patients. However, the proportion of trimethoprim resistant strains fell annually when resistance was measured at trimethoprim concentrations of both 10 mg/l and 1000 mg/l. The proportion of strains able to transfer trimethoprim resistance also fell by half, and there was some movement of trimethoprim resistance transposons into the bacterial chromosome. These results suggest that migration of high-level trimethoprim resistance genes into the permanent location of the bacterial chromosome is occurring.19863527699
6066140.9997Characterization of functional properties of Enterococcus faecium strains isolated from human gut. The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.201526485327
4902150.9997Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae). The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities, was determined. Lesser mealworm larvae were exposed to a negative bacterial control, a donor Salmonella enterica serotype Newport strain, a recipient Escherichia coli, or both donor and recipient to examine horizontal gene transfer of plasmids. Horizontal gene transfer was validated post external disinfection, via a combination of selective culturing, testing of indole production by spot test, characterization of incompatibility plasmids by polymerase chain reaction, and profiling antibiotic susceptibility by a minimum inhibitory concentration (MIC) assay. Transconjugants were produced in all larvae exposed to both donor and recipient bacteria at frequencies comparable to control in vitro filter mating conjugation studies run concurrently. Transconjugants displayed resistance to seven antibiotics in our MIC panel and, when characterized for incompatibility plasmids, were positive for the N replicon and negative for the A/C replicon. The transconjugants did not display resistance to expanded-spectrum cephalosporins, which were associated with the A/C plasmid. This study demonstrates that lesser mealworm larvae, which infest poultry litter, are capable of supporting the horizontal transfer of antibiotic resistance genes and that this exchange can occur within their gastrointestinal tract and between different species of bacteria under laboratory conditions. This information is essential to science-based risk assessments of industrial antibiotic usage and its impact on animal and human health.200919425825
3396160.9997Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. The high use of antibiotics for the treatment of bacterial diseases is one of the main problems in the mass production of animal protein. Salmon farming in Chile is a clear example of the above statement, where more than 5,500 tonnes of antibiotics have been used over the last 10 years. This has caused a great impact both at the production level and on the environment; however, there are still few works in relation to it. In order to demonstrate the impact of the high use of antibiotics on fish gut microbiota, we have selected four salmon farms presenting a similar amount of fish of the Atlantic salmon species (Salmo salar), ranging from 4,500 to 6,000 tonnes. All of these farms used treatments with high doses of antibiotics. Thus, 15 healthy fish were selected and euthanised in order to isolate the bacteria resistant to the antibiotics oxytetracycline and florfenicol from the gut microbiota. In total, 47 bacterial isolates resistant to florfenicol and 44 resistant to oxytetracycline were isolated, among which isolates with Minimum Inhibitory Concentrations (MIC) exceeding 2048 μg/mL for florfenicol and 1024 μg/mL for oxytetracycline were found. In addition, another six different antibiotics were tested in order to demonstrate the multiresistance phenomenon. In this regard, six isolates of 91 showed elevated resistance values for the eight tested antibiotics, including florfenicol and oxytetracycline, were found. These bacteria were called "super-resistant" bacteria. This phenotypic resistance was verified at a genotypic level since most isolates showed antibiotic resistance genes (ARGs) to florfenicol and oxytetracycline. Specifically, 77% of antibiotic resistant bacteria showed at least one gene resistant to florfenicol and 89% showed at least one gene resistant to oxytetracycline. In the present study, it was demonstrated that the high use of the antibiotics florfenicol and oxytetracycline has, as a consequence, the selection of multiresistant bacteria in the gut microbiota of farmed fish of the Salmo salar species at the seawater stage. Also, the phenotypic resistance of these bacteria can be correlated with the presence of antibiotic resistance genes.201830204782
4572170.9997Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.202336462825
3391180.9997Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.201020629799
5638190.9997PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. BACKGROUND: The selection of antibiotic resistance genes during antibiotic therapy is a critical problem complicated by the transmission of resistance genes to previously sensitive strains via conjugative plasmids and transposons and by the transfer of resistance genes between gram-positive and gram-negative bacteria. The purpose of this investigation was to monitor the presence of selected tetracycline resistance genes in subgingival plaque during site specific tetracycline fiber therapy in 10 patients with adult periodontitis. METHOD: The polymerase chain reaction (PCR) was used in separate tests for the presence of 3 tetracycline resistance genes (tetM, tetO and tetQ) in DNA purified from subgingival plaque samples. Samples were collected at baseline, i.e., immediately prior to treatment, and at 2 weeks, and 1, 3, and 6 months post-fiber placement. The baseline and 6-month samples were also subjected to DNA hybridization tests for the presence of 8 putative periodontal pathogenic bacteria. RESULTS: PCR analysis for the tetM resistance gene showed little or no change in 5 patients and a decrease in detectability in the remaining 5 patients over the 6 months following tetracycline fiber placement. The results for tetO and tetQ were variable showing either no change in detectability from baseline through the 6-month sampling interval or a slight increase in detectability over time in 4 of the 10 patients. DNA hybridization analysis showed reductions to unmeasurable levels of the putative periodontal pathogenic bacteria in all but 2 of the 10 patients. CONCLUSIONS: These results complement earlier studies of tet resistance and demonstrate the efficacy of PCR monitoring for the appearance of specific resistance genes during and after antibiotic therapy.200010883874