# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3585 | 0 | 1.0000 | Effects of subtherapeutic concentrations of antimicrobials on gene acquisition events in Yersinia, Proteus, Shigella, and Salmonella recipient organisms in isolated ligated intestinal loops of swine. OBJECTIVE: To assess antimicrobial resistance and transfer of virulence genes facilitated by subtherapeutic concentrations of antimicrobials in swine intestines. ANIMALS: 20 anesthetized pigs experimentally inoculated with donor and recipient bacteria. PROCEDURES: 4 recipient pathogenic bacteria (Salmonella enterica serotype Typhimurium, Yersinia enterocolitica, Shigella flexneri, or Proteus mirabilis) were incubated with donor bacteria in the presence of subinhibitory concentrations of 1 of 16 antimicrobials in isolated ligated intestinal loops in swine. Donor Escherichia coli contained transferrable antimicrobial resistance or virulence genes. After coincubations, intestinal contents were removed and assessed for pathogens that acquired new antimicrobial resistance or virulence genes following exposure to the subtherapeutic concentrations of antimicrobials. RESULTS: 3 antimicrobials (apramycin, lincomycin, and neomycin) enhanced transfer of an antimicrobial resistance plasmid from commensal E coli organisms to Yersinia and Proteus organisms, whereas 7 antimicrobials (florfenicol, hygromycin, penicillin G, roxarsone, sulfamethazine, tetracycline, and tylosin) exacerbated transfer of an integron (Salmonella genomic island 1) from Salmonella organisms to Yersinia organisms. Sulfamethazine induced the transfer of Salmonella pathogenicity island 1 from pathogenic to nonpathogenic Salmonella organisms. Six antimicrobials (bacitracin, carbadox, erythromycin, sulfathiazole, tiamulin, and virginiamycin) did not mediate any transfer events. Sulfamethazine was the only antimicrobial implicated in 2 types of transfer events. CONCLUSIONS AND CLINICAL RELEVANCE: 10 of 16 antimicrobials at subinhibitory or subtherapeutic concentrations augmented specific antimicrobial resistance or transfer of virulence genes into pathogenic bacteria in isolated intestinal loops in swine. Use of subtherapeutic antimicrobials in animal feed may be associated with unwanted collateral effects. | 2013 | 23879845 |
| 4903 | 1 | 0.9998 | Tetracycline resistance gene transfer from Escherichia coli donors to Salmonella Heidelberg in chickens is impacted by the genetic context of donors. Chicken ceca are a rich source of bacteria, including zoonotic pathogens such as Salmonella enterica. The microbiota includes strains/species carrying antimicrobial resistance genes and horizontal transfer of resistance determinants between species may increase the risk to public health and farming systems. Possible sources of these antimicrobial resistance donors - the eggshell carrying bacteria from the hen vertically transmitted to the offspring, or the barn environment where chicks are hatched and raised - has been little explored. In this study, we used Salmonella enterica serovar Heidelberg to evaluate if layer chicks raised in different environments (using combinations of sterilized or non-sterile eggs placed in sterilized isolation chambers or non-sterile rooms) acquired transferable tetracycline resistance genes from surrounding bacteria, especially Escherichia coli. Two-day old chicks were challenged with an antibiotic-susceptible S. Heidelberg strain SH2813(nal)(R) and Salmonella recovered from the cecum of birds at different timepoints to test the in vivo acquisition of tetracycline resistance. Tetracycline-resistant E. coli isolates recovered from birds from the in vivo experiment were used to test the in vitro transfer of tetracycline resistance genes from E. coli to Salmonella. Even though Salmonella SH2813(nal)(R) colonized the 2-day old chicks after oral challenge, tetracycline-resistant Salmonella transconjugants were not recovered, as previously observed. In vitro experiments provided similar results. We discuss several hypotheses that might explain the absence of transconjugants in vitro and in vivo, despite the presence of diverse plasmids in the recovered E. coli. The factors that can inhibit/promote antimicrobial resistance transfers to Salmonella for different plasmid types need further exploration. | 2024 | 39581077 |
| 4721 | 2 | 0.9998 | Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. BACKGROUND: Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. RESULTS: In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. CONCLUSION: The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. | 2009 | 19814790 |
| 3395 | 3 | 0.9997 | Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant antibiotics. | 2005 | 15778307 |
| 5634 | 4 | 0.9997 | Effects of antibiotic use in sows on resistance of E. coli and Salmonella enterica Typhimurium in their offspring. To determine effects of exposure of parental animals to antibiotics on antibiotic resistance in bacteria of offspring, sows were either treated or not treated with oxytetracycline prior to farrowing and their pigs were challenged with Salmonella enterica Typhimurium and treated or not treated with oxytetracycline and apramycin. Fecal Escherichia coli were obtained from sows, and E. coli and salmonella were recovered from pigs. Antibiotic resistance patterns of isolates were determined using a minimum inhibitory concentration (MIC) analysis. Polymerase chain reaction (PCR) and electroporation were used to characterize the genetic basis for the resistance and to determine the location of resistance genes. Treatments had little effect on resistance of the salmonella challenge organism. The greatest resistance to apramycin occurred in E. coli from pigs treated with apramycin and whose sows had earlier exposure to oxytetracycline. Resistance to oxytetracycline was consistently high throughout the study in isolates from all pigs and sows; however, greater resistance was noted in pigs nursing sows that had previous exposure to that drug. The aac(3)-IV gene, responsible for apramycin resistance, was found in approximately 90% of apramycin-resistant isolates and its location was determined to be on plasmids. Several resistant E. coli bio-types were found to contain the resistance gene. These results indicate that resistance to apramycin and oxytetracycline in E. coli of pigs is affected by previous use of oxytetracycline in sows. | 2005 | 16156702 |
| 4908 | 5 | 0.9997 | Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine. | 2024 | 38191970 |
| 4907 | 6 | 0.9997 | Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. Antimicrobial use in food animals may contribute to antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of animal intestine may serve as a reservoir of resistance-genes. To understand the dynamics of plasmid-mediated resistance to cephalosporin ceftiofur in enteric commensals of cattle, we developed a deterministic mathematical model of the dynamics of ceftiofur-sensitive and resistant commensal enteric Escherichia coli (E. coli) in the absence of and during parenteral therapy with ceftiofur. The most common treatment scenarios including those using a sustained-release drug formulation were simulated; the model outputs were in agreement with the available experimental data. The model indicated that a low but stable fraction of resistant enteric E. coli could persist in the absence of immediate ceftiofur pressure, being sustained by horizontal and vertical transfers of plasmids carrying resistance-genes, and ingestion of resistant E. coli. During parenteral therapy with ceftiofur, resistant enteric E. coli expanded in absolute number and relative frequency. This expansion was most influenced by parameters of antimicrobial action of ceftiofur against E. coli. After treatment (>5 weeks from start of therapy) the fraction of ceftiofur-resistant cells among enteric E. coli, similar to that in the absence of treatment, was most influenced by the parameters of ecology of enteric E. coli, such as the frequency of transfer of plasmids carrying resistance-genes, the rate of replacement of enteric E. coli by ingested E. coli, and the frequency of ceftiofur resistance in the latter. | 2012 | 22615803 |
| 4678 | 7 | 0.9997 | Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus. | 2021 | 34277757 |
| 4612 | 8 | 0.9997 | Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. The food chain is considered one of the main routes of antibiotic resistance diffusion between animal and human population. The resistance to antimicrobial agents among enterococci could be related to the efficient exchange of transferable genetic elements. In this study a sausage model was used to evaluate the persistence of antibiotic resistant enterococci during meat fermentation and to assess horizontal gene transfer among bacteria involved in meat fermentation. Enterococcus faecalis OG1rf harbouring either pCF10 or pAMβ1 plasmid was used as donor strain. The analysis of population dynamics during fermentation confirmed that the human isolate E. faecalis OG1rf was able to colonize the meat ecosystem with similar growth kinetics to that of food origin enterococci and to transfer the mobile genetic elements coding for tetracycline and erythromycin resistances. Transconjugant strains were detected after only two days of fermentation and increased their numbers during ripening even in the absence of selective antibiotic pressure. By means of culture-dependent and -independent molecular techniques, transconjugant strains carrying both tetracycline and erythromycin resistance genes were identified in enterococci, pediococci, lactobacilli and staphylococci groups. Our results suggest that the sausage model provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among food microbiota. | 2012 | 22365347 |
| 3531 | 9 | 0.9997 | Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria. | 2019 | 31536878 |
| 4613 | 10 | 0.9997 | Glycopeptide-resistance transferability from vancomycin-resistant enterococci of human and animal source to Listeria spp. AIMS: The glycopeptide-resistance transferability from vancomycin-resistant enterococci (VRE) of clinical and animal origin to different species of Listeria was investigated. METHODS AND RESULTS: Of 36 matings, performed on membrane filter, the glycopeptide resistance was successfully transferred in six attempts, five with donors of animal origin and only one with donors from clinical source. The acquired glycopeptide resistance in Listeria transconjugants was confirmed by the presence of the conjugative plasmid band and by the amplification of the 732-bp fragment of vanA gene in transferred plasmids. CONCLUSIONS: Despite the lower number of bacteria used in this study, the source of enterococci influenced the outcome of mating. Moreover transferred VanA plasmid induced a different expression in Listeria transconjugants, suggesting that gene expression might be influenced by species affiliation of recipients. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data strengthen the opinion that enterococci are an important source of resistance genes for Listeria via the transfer of movable genetic elements. As these strains are commonly found in the same habitats, a horizontal spread of glycopeptide resistance in Listeria spp. could be possible. | 2004 | 15548299 |
| 4902 | 11 | 0.9997 | Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae). The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities, was determined. Lesser mealworm larvae were exposed to a negative bacterial control, a donor Salmonella enterica serotype Newport strain, a recipient Escherichia coli, or both donor and recipient to examine horizontal gene transfer of plasmids. Horizontal gene transfer was validated post external disinfection, via a combination of selective culturing, testing of indole production by spot test, characterization of incompatibility plasmids by polymerase chain reaction, and profiling antibiotic susceptibility by a minimum inhibitory concentration (MIC) assay. Transconjugants were produced in all larvae exposed to both donor and recipient bacteria at frequencies comparable to control in vitro filter mating conjugation studies run concurrently. Transconjugants displayed resistance to seven antibiotics in our MIC panel and, when characterized for incompatibility plasmids, were positive for the N replicon and negative for the A/C replicon. The transconjugants did not display resistance to expanded-spectrum cephalosporins, which were associated with the A/C plasmid. This study demonstrates that lesser mealworm larvae, which infest poultry litter, are capable of supporting the horizontal transfer of antibiotic resistance genes and that this exchange can occur within their gastrointestinal tract and between different species of bacteria under laboratory conditions. This information is essential to science-based risk assessments of industrial antibiotic usage and its impact on animal and human health. | 2009 | 19425825 |
| 5995 | 12 | 0.9997 | In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. The ability of 14 Lactobacillus strains, isolated from fermented dry sausages, to transfer tetracycline resistance encoded by tet(M) through conjugation was examined using filter mating experiments. Seven out of 14 tetracycline-resistant Lactobacillus isolates were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from 10(-4) to 10(-6) transconjugants per recipient. Two of these strains could also transfer their resistance to Lactococcus lactis subsp. lactis, whereas no conjugal transfer to a Staphylococcus aureus recipient was found. These data suggest that meat lactobacilli might be reservoir organisms for acquired resistance genes that can be spread to other lactic acid bacteria. In order to assess the risk of this potential hazard, the magnitude of transfer along the food chain merits further research. | 2003 | 12900030 |
| 4723 | 13 | 0.9997 | Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. | 2025 | 39536720 |
| 4572 | 14 | 0.9997 | Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains. | 2023 | 36462825 |
| 4580 | 15 | 0.9997 | Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Animal feed is increasingly being supplemented with antibiotics to decrease the risk of epidemics in animal husbandry. This practice could lead to the selection for antibiotic resistant micro-organisms. The aim of this study was to determine the level of antibiotic resistant bacteria present on retail and abattoir chicken. Staphylococci, Enterobacteriaceae, Salmonella and isolates from total aerobic plate count were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline and gentamicin using the disc diffusion susceptibility test; resistance to penicillin was determined using oxacillin. Results from the antibiotic code profile indicated that many of the bacterial strains were displaying multiple antibiotic resistance (MAR). A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by the abattoir samples, therefore suggesting that the incidence of MAR pathogenic bacteria was also higher in the abattoir samples. This resistance spectrum of abattoir samples is a result of farmers adding low doses of antibiotics to livestock feed to improve feeding efficiency so that the animals need less food to reach marketable weight. The lower incidence of MAR pathogenic bacteria in the retail samples is a result of resistance genes being lost due to lack of selective pressure, or to the fact that the resistant flora are being replaced by more sensitive flora during processing. The use of subtherapeutic levels of antibiotics for prophylaxis and as growth promoters remains a concern as the laws of evolution dictate that microbes will eventually develop resistance to practically any antibiotic. Selective pressure exerted by widespread antimicrobial use is therefore the driving force in the development of antibiotic resistance. This study indicated that a large proportion of the bacterial flora on fresh chicken is resistant to a variety of antibiotics, and that resultant food-related infections will be more difficult to treat. | 1998 | 9633089 |
| 3586 | 16 | 0.9997 | Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species. With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. Limosibacillus reuteri and Lacticaseibacillus paracasei exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while Lactobacillus gasseri showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. Lactiplantibacillus plantarum, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations. | 2024 | 39403731 |
| 3392 | 17 | 0.9997 | Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. AIMS: Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. METHODS AND RESULTS: Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. CONCLUSIONS: Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. SIGNIFICANCE AND IMPACT OF STUDY: Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection. | 2014 | 24797476 |
| 5546 | 18 | 0.9997 | Antibiotic resistance and Caco-2 cell invasion of Pseudomonas aeruginosa isolates from farm environments and retail products. The potential pathogenicity of Pseudomonas aeruginosa isolates from food animals, retail meat products, and food processing environments was evaluated by determining their antibiotic resistance profiles and invasiveness into human intestinal Caco-2 cell. In general, the genomically diversified isolates of P. aeruginosa were resistant to beta-lactams (ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, and cephalothin), chloramphenicol, tetracycline, kanamycin, nalidixic acid, and sulfamethoxazole-trimethoprim. Acquisition of any other antibiotic resistance genes, such as class 1 integrons and other beta-lactamase genes, was not found in the tested isolates. The expression of OprM membrane protein, which is associated with a multidrug efflux system, played a major role in their antibiotic resistance. Single mutation in the GyrA to confer resistance to nalidixic acids was also found in the tested isolates, indicating that these factors could synergistically affect the resistance of the P. aeruginosa isolates. The number of bacteria invading into the Caco-2 cells was 2.5 log(10) CFU/ml on average. Therefore, the public health concern of P. aeruginosa could be relevant since its occurrence in food animals could cross contaminate the retail meat products during food handling and processing. | 2007 | 17289197 |
| 5635 | 19 | 0.9997 | Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being bla TEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of bla TEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. | 2014 | 25566232 |