# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3576 | 0 | 1.0000 | Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of beta-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known beta-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The beta-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain. | 2008 | 18689509 |
| 3594 | 1 | 0.9998 | Directed Recovery and Molecular Characterization of Antibiotic Resistance Plasmids from Cheese Bacteria. Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain. | 2021 | 34360567 |
| 3579 | 2 | 0.9998 | The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp. lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open reading frame encoding a hypothetical protein, which exhibited a similar GC content (51-53%). These genes were positioned in the same genomic context within the examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in a clade separate from tet(W) of other species and genera. This is not the case for tet(W) encoded by other bifidobacteria and other species where tet(W) is often found in association with transferable elements or in different genomic regions. An IS5-like element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found in a human gut related bacterium, but it was not associated with any tet(W) genes. This suggests that the IS5-like element is not associated with genetic mobility. tet(W) and the IS5 element have previously been shown to be co-transcribed, indicating that co-localization may be associated with tet(W) expression. Here, we present a method where phylogenetic and in silico genome analysis can be used to determine whether antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby possess a negligible risk of transfer. | 2021 | 34335493 |
| 4635 | 3 | 0.9997 | A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains. | 2018 | 29500262 |
| 3578 | 4 | 0.9997 | Analysis of newly detected tetracycline resistance genes and their flanking sequences in human intestinal bifidobacteria. Due to tetracycline abuse, the safe bifidobacteria in the human gastrointestinal intestinal tract (GIT) may serve as a reservoir of tetracycline resistance genes. In the present investigation of 92 bifidobacterial strains originating from the human GIT, tetracycline resistance in 29 strains was mediated by the tet(W), tet(O) or tet(S) gene, and this is the first report of tet(O)- and tet(S)-mediated tetracycline resistance in bifidobacteria. Antibiotic resistance genes harbored by bifidobacteria are transferred from other bacteria. However, the characteristics of the spread and integration of tetracycline resistance genes into the human intestinal bifidobacteria chromosome are poorly understood. Here, conserved sequences were identified in bifidobacterial strains positive for tet(W), tet(O), or tet(S), including the tet(W), tet(O), or tet(S) and their partial flanking sequences, which exhibited identity with the sequences in multiple human intestinal pathogens, and genes encoding 23 S rRNA, an ATP transporter, a Cpp protein, and a membrane-spanning protein were flanking by the 1920-bp tet(W), 1920-bp tet(O), 1800-bp tet(O) and 252-bp tet(S) in bifidobacteria, respectively. These findings suggest that tetracycline resistance genes harbored by human intestinal bifidobacteria might initially be transferred from pathogens and that each kind of tetracycline resistance gene might tend to insert in the vicinity of specific bifidobacteria genes. | 2017 | 28740169 |
| 3598 | 5 | 0.9997 | An investigation of horizontal transfer of feed introduced DNA to the aerobic microbiota of the gastrointestinal tract of rats. BACKGROUND: Horizontal gene transfer through natural transformation of members of the microbiota of the lower gastrointestinal tract (GIT) of mammals has not yet been described. Insufficient DNA sequence similarity for homologous recombination to occur has been identified as the major barrier to interspecies transfer of chromosomal DNA in bacteria. In this study we determined if regions of high DNA similarity between the genomes of the indigenous bacteria in the GIT of rats and feed introduced DNA could lead to homologous recombination and acquisition of antibiotic resistance genes. RESULTS: Plasmid DNA with two resistance genes (nptI and aadA) and regions of high DNA similarity to 16S rRNA and 23S rRNA genes present in a broad range of bacterial species present in the GIT, were constructed and added to standard rat feed. Six rats, with a normal microbiota, were fed DNA containing pellets daily over four days before sampling of the microbiota from the different GI compartments (stomach, small intestine, cecum and colon). In addition, two rats were included as negative controls. Antibiotic resistant colonies growing on selective media were screened for recombination with feed introduced DNA by PCR targeting unique sites in the putatively recombined regions. No transformants were identified among 441 tested isolates. CONCLUSIONS: The analyses showed that extensive ingestion of DNA (100 μg plasmid) per day did not lead to increased proportions of kanamycin resistant bacteria, nor did it produce detectable transformants among the aerobic microbiota examined for 6 rats (detection limit < 1 transformant per 1,1 × 10(8) cultured bacteria). The key methodological challenges to HGT detection in animal feedings trials are identified and discussed. This study is consistent with other studies suggesting natural transformation is not detectable in the GIT of mammals. | 2012 | 22463741 |
| 4497 | 6 | 0.9997 | Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm. | 2019 | 31448060 |
| 4641 | 7 | 0.9997 | Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis. | 2023 | 36781180 |
| 4501 | 8 | 0.9997 | A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group. | 1992 | 1339256 |
| 4640 | 9 | 0.9997 | Genome analysis of probiotic bacteria for antibiotic resistance genes. To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes. | 2022 | 34989942 |
| 3577 | 10 | 0.9997 | Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes. | 2022 | 35992677 |
| 3595 | 11 | 0.9997 | Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene. | 2022 | 36677394 |
| 3580 | 12 | 0.9997 | Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments. The transferability of a large plasmid that harbors a tetracycline resistance gene tet(S), to fish and human pathogens was assessed using electrotransformation and conjugation. The plasmid, originally isolated from fish intestinal Lactococcus lactis ssp. lactis KYA-7, has potent antagonistic activity against the selected recipients (Lactococcus garvieae and Listeria monocytogenes), preventing conjugation. Therefore the tetracycline resistance determinant was transferred via electroporation to L. garvieae. A transformant clone was used as the donor in conjugation experiments with three different L. monocytogenes strains. To our knowledge, this is the first study showing the transfer of an antibiotic resistance plasmid from fish-associated lactic bacteria to L. monocytogenes, even if the donor L. garvieae was not the original host of the tetracycline resistance but experimentally created by electroporation. These results demonstrate that the antibiotic resistance genes in the fish intestinal bacteria have the potential to spread both to fish and human pathogens, posing a risk to aquaculture and consumer safety. | 2009 | 19236483 |
| 4612 | 13 | 0.9997 | Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. The food chain is considered one of the main routes of antibiotic resistance diffusion between animal and human population. The resistance to antimicrobial agents among enterococci could be related to the efficient exchange of transferable genetic elements. In this study a sausage model was used to evaluate the persistence of antibiotic resistant enterococci during meat fermentation and to assess horizontal gene transfer among bacteria involved in meat fermentation. Enterococcus faecalis OG1rf harbouring either pCF10 or pAMβ1 plasmid was used as donor strain. The analysis of population dynamics during fermentation confirmed that the human isolate E. faecalis OG1rf was able to colonize the meat ecosystem with similar growth kinetics to that of food origin enterococci and to transfer the mobile genetic elements coding for tetracycline and erythromycin resistances. Transconjugant strains were detected after only two days of fermentation and increased their numbers during ripening even in the absence of selective antibiotic pressure. By means of culture-dependent and -independent molecular techniques, transconjugant strains carrying both tetracycline and erythromycin resistance genes were identified in enterococci, pediococci, lactobacilli and staphylococci groups. Our results suggest that the sausage model provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among food microbiota. | 2012 | 22365347 |
| 5993 | 14 | 0.9997 | Genetic basis of erythromycin resistance in oral bacteria. We determined the prevalence of erythromycin-resistant bacteria in the oral cavity and identified mef and erm(B) as the most common resistance determinants. In addition, we demonstrate the genetic linkage, on various Tn1545-like conjugative transposons, between erythromycin and tetracycline resistance in a number of isolates. | 2004 | 15155239 |
| 4498 | 15 | 0.9997 | A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated. | 2008 | 18024520 |
| 4526 | 16 | 0.9997 | The tetracycline resistance gene tet(M) exhibits mosaic structure. Tetracycline resistance genes of the M class, tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight different tet(M) genes (from Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum, and Neisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of the tet(M) locus. Unlike described cases of chromosomally located mosaic loci, tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure within tet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located. | 1996 | 8812782 |
| 3597 | 17 | 0.9997 | Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria. | 2001 | 11157217 |
| 4610 | 18 | 0.9997 | Acquired antibiotic resistance in lactic acid bacteria from food. Acquired antibiotic resistance, i.e. resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species living in habitats (e.g. human and animal intestines) which are regularly challenged with antibiotics. Most data are available for enterococci and enteric lactobacilli. Raw material from animals (milk and meat) which are inadvertantly contaminated with fecal matters during production will carry antibiotic resistant lactic acid bacteria into the final fermented products such as raw milk cheeses and raw sausages. The discovered conjugative genetic elements of LAB isolated from animals and food are very similar to elements studied previously in pathogenic streptococci and enterococci, e.g. theta-type replicating plasmids of the pAMbeta1, pIP501-family, and transposons of the Tn916-type. Observed resistance genes include known genes like tetM, ermAM, cat, sat and vanA. A composite 29,871 bp resistance plasmid detected in Lactococcus lactis subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes, cat and str from Staphylococcus aureus. Three out of five IS elements on the plasmid are almost or completely identical to IS1216 present in the vanA resistance transposon Tn1546. These data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances like enterococci is high in animals (and humans) which are regularly treated with antibiotics. The transfer of antibiotic resistant bacteria from animals into fermented and other food can be avoided if the raw substrate milk or meat is pasteurized or heat treated. Antibiotic resistance traits as selectable markers in genetic modification of lactic acid bacteria for different purposes are presently being replaced, e.g. by metabolic traits to generate food-grade vectors. | 1999 | 10532375 |
| 4471 | 19 | 0.9996 | Update on acquired tetracycline resistance genes. This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed. | 2005 | 15837373 |