# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 356 | 0 | 1.0000 | Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes. | 2000 | 10781091 |
| 357 | 1 | 0.9994 | New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. In this report we describe two distinct approaches to develop new antibiotic resistance cassettes that allow for efficient selection of Borrelia burgdorferi transformants. The first approach utilizes fusions of borrelial flagellar promoters to antibiotic resistance markers from other bacteria. The AACC1 gene, which encodes a gentamicin acetyltransferase, conferred a high level of gentamicin resistance in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred between this cassette and the kanamycin resistance cassette, which was previously developed in an analogous fashion. A second and different approach was taken to develop an efficient selectable marker that confers resistance to the antibiotic coumermycin A1. A synthetic gene was designed from the GYRB301 allele of the coumermycin-resistant B. Burgdorferi strain B31-NGR by altering the coding sequence at the wobble position. The resulting gene, GYRB(SYN), encodes a protein identical to the product of GYRB301, but the genes share only 66% nucleotide identity. The nucleotide sequence of GYRB(SYN)is sufficiently divergent from the endogenous B. Burgdorferi GYRB gene to prevent recombination between them. The cassettes described in this paper improve our repertoire of genetic tools in B. Burgdorferi. These studies also provide insight into parameters governing recombination and gene expression in B. Burgdorferi. | 2003 | 14593251 |
| 384 | 2 | 0.9992 | Broad-host-range mobilizable suicide vectors for promoter trapping in gram-negative bacteria. Here we report the construction of three different vectors for the identification of bacterial genes induced in vitro and/or in vivo. These plasmids contain kanamycin, gentamicin, or tetracycline resistance genes as selectable markers. A promoterless cat and an improved GFP (mut3-gfp) can be used to follow the induction of gene expression by measuring chloramphenicol resistance and fluorescence, respectively. | 2002 | 12449381 |
| 351 | 3 | 0.9991 | Rapid and efficient cloning of proviral flanking fragments by kanamycin resistance gene complementation. We have developed a technique for the rapid cloning of unknown flanking regions of transgenic DNA. We complemented a truncated kanamycin resistance gene of a bacterial plasmid with a neomycin resistance gene fragment from a gene transfer vector. Optimized transformation conditions allowed us to directly select for kanamycin-resistant bacteria. We cloned numerous proviral flanking fragments from growth factor-independent cell mutants that were obtained after infection with a replication incompetent retroviral vector and identified integrations into the cyclin D2 and several unknown genomic sequences. We anticipate that our method could be adapted to various vector systems that are used to tag and identify genes and to map genomes. | 1999 | 9863001 |
| 377 | 4 | 0.9991 | Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosa and other gram-negative bacteria. We report the construction of two broad host range promoter-probe plasmid vectors for rapid analysis of promoters in Gram-negative bacteria. The new vectors, pME4507 and pME4510, carry carbenicillin and gentamycin resistance genes, respectively, and are small sized (4 kb) with a flexible multiple cloning site to facilitate directional cloning of putative promoter elements. The vectors allow rapid plate-based screening for promoter activities, using beta-galactosidase as the reporter enzyme. In the absence of an inserted promoter fragment, they display very low background activity, making them a useful tool for analysis of low expression level promoters. | 1998 | 9851050 |
| 381 | 5 | 0.9991 | A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. The use of Tn7-based systems for site-specific insertion of DNA into the chromosome of Gram-negative bacteria has been limited due to the lack of appropriate vectors. We therefore developed a flexible panel of Tn7 delivery vectors. In one group of vectors, the miniTn7 element, which is inserted into the chromosome, contains a multiple cloning site (MCS) and the kanamycin, streptomycin or gentamicin resistance markers. Another group of vectors intended for tagging with green fluorescent protein (GFP) carries the gfpmut3* gene controlled by the modified lac promoter PA1/04/03, several transcriptional terminators, and various resistance markers. These vectors insert Tn7 into a specific, neutral intergenic region immediately downstream of the gene encoding glucosamine-6-phosphate synthetase (GlmS) in the tested fluorescent Pseudomonas strains. The gfp-tagging vector containing a gentamicin-resistance marker is useful for tagging strains carrying a Tn5 transposon. Tn5 transposons often carry kanamycin-resistance-encoding genes and are frequently used to generate bacterial mutants and to deliver reporter constructions in gene expression studies. To demonstrate the utility of a dual marker/reporter system, the Tn7-gfp marker system was combined with a Tn5-delivered luxAB reporter system in Pseudomonas fluorescens. The system allowed detection of gfp-tagged cells in the barley rhizosphere, while expression of the Tn5-tagged locus could be determined by measuring bioluminescence. | 2001 | 11348676 |
| 379 | 6 | 0.9991 | Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. A broad host range cloning vehicle that can be mobilized at high frequency into Gram-negative bacteria has been constructed from the naturally occurring antibiotic resistance plasmid RK2. The vehicle is 20 kilobase pairs in size, encodes tetracycline resistance, and contains two single restriction enzyme sites suitable for cloning. Mobilization is effected by a helper plasmid consisting of the RK2 transfer genes linked to a ColE1 replicon. By use of this plasmid vehicle, a gene bank of the DNA from a wild-type strain of Rhizobium meliloti has been constructed and established in Escherichia coli. One of the hybrid plasmids in the bank contains a DNA insert of approximately 26 kilobase pairs which has homology to the nitrogenase structural gene region of Klebsiella pneumoniae. | 1980 | 7012838 |
| 370 | 7 | 0.9991 | A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae. The availability of Saccharomyces cerevisiae yeast strains with multiple auxotrophic markers allows the stable introduction and selection of more than one yeast shuttle vector containing marker genes that complement the auxotrophic markers. In certain experimental situations there is a need to recover more than one shuttle vector from yeast. To facilitate the recovery and identification of multiple plasmids from S. cerevisiae, we have constructed a series of plasmids based on the pRS series of yeast shuttle vectors. Bacterial antibiotic resistance genes to chloramphenicol, kanamycin and zeocin have been combined with the yeast centromere sequence (CEN6), the autonomously replicating sequence (ARSH4) and one of the four yeast selectable marker genes (HIS3, TRP1, LEU2 or URA3) from the pRS series of vectors. The 12 plasmids produced differ in antibiotic resistance and yeast marker gene within the backbone of the multipurpose plasmid pBluescript II. The newly constructed vectors show similar mitotic stability to the original pRS vectors. In combination with the ampicillin-resistant pRS series of yeast shuttle vectors, these plasmids now allow the recovery and identification in bacteria of up to four different vectors from S. cerevisiae. | 2007 | 17597491 |
| 380 | 8 | 0.9991 | Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. To analyse the control of chloramphenicol (Cm) resistance conferred by the Staphylococcus aureus plasmid pUB112, a detailed restriction map of this plasmid has been constructed, and the position and orientation of the cat gene have been determined. An MboI restriction fragment carrying the entire cat gene of pUB112 was then cloned in another S. aureus plasmid, the kanamycin (Km) resistance vector pUB110. Depending on the orientation of the incorporated cat fragment, the level of Cm resistance varied dramatically in Bacillus subtilis cells. This effect could not be eliminated by deleting parts of the vector DNA, and only the introduction of a transcription termination signal led to orientation-independent Cm resistance. One such construct was further developed to yield a shuttle vector, replicating both in Escherichia coli and B. subtilis. Using this vector the expression of incorporated genes can be determined in both Gram-positive and Gram-negative bacteria. By in vitro transcription experiments using pUB110 DNA linearized with various restriction endonucleases as template, two pUB110 promoters could be localized and their orientations determined: one promoter controls a gene whose function is unknown, the other regulates the transcription of the KmR gene. | 1984 | 6442250 |
| 387 | 9 | 0.9990 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 430 | 10 | 0.9990 | Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. DNA fragments generated by the EcoRI of HindIII endonucleases from the low copy number antibiotic resistance plasmids R6 and R6-5 were separately cloned using the high copy number ColE1 or pML21 plasmid vectors and the insertional inactivation procedure. The hybrid plasmids that were obtained were used to determine the location of the EcoRI and HindIII cleavage sites on the parent plasmid genomes by means of electron microscope heteroduplex analysis and agarose gel electrophoresis. Ultracentrifugation of the cloned fragments in caesium chloride gradients localized the high buoyant density regions of R6-5 to fragments that carry the genes for resistance to streptomycin-spectinomycin, sulfonamide, and mercury and a low buoyant density region to fragments that carry the tetracycline resistance determinant. Functional analysis of hybrid plasmids localized a number of plasmid properties such as resistances to antibiotics and mercury and several replication functions to specific regions of the R6-5 genome. Precise localisation of the genes for resistance to chloramphenicol, kanamycin, fusidic acid and tetracycline was possible due to the presence of identified restriction endonuclease cleavage sites within these determinants. Only one region competent for autonomous replication was identified on the R6-5 plasmid genome and this was localized to EcoRI fragment 2 and HindIII fragment 1. However, two additional regions of replication activity designated RepB and RepC, themselves incapable of autonomous replication but capable supporting replication of a linked ColE1 plasmid in polA- bacteria, were also identified. | 1978 | 672900 |
| 352 | 11 | 0.9990 | Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. A simple procedure for cloning and stable insertion of foreign genes into the chromosomes of gram-negative eubacteria was developed by combining in two sets of plasmids (i) the transposition features of Tn10 and Tn5; (ii) the resistances to the herbicide bialaphos, to mercuric salts and organomercurial compounds, and to arsenite, and (iii) the suicide delivery properties of the R6K-based plasmid pGP704. The resulting constructions contained unique NotI or SfiI sites internal to either the Tn10 or the Tn5 inverted repeats. These sites were readily used for cloning DNA fragments with the help of two additional specialized cloning plasmids, pUC18Not and pUC18Sfi. The newly derived constructions could be maintained only in donor host strains that produce the R6K-specified pi protein, which is an essential replication protein for R6K and plasmids derived therefrom. Donor plasmids containing hybrid transposons were transformed into a specialized lambda pir lysogenic Escherichia coli strain with a chromosomally integrated RP4 that provided broad-host-range conjugal transfer functions. Delivery of the donor plasmids into selected host bacteria was accomplished through mating with the target strain. Transposition of the hybrid transposon from the delivered suicide plasmid to a replicon in the target cell was mediated by the cognate transposase encoded on the plasmid at a site external to the transposon. Since the transposase function was not maintained in target cells, such cells were not immune to further transposition rounds. Multiple insertions in the same strain are therefore only limited by the availability of distinct selection markers. The utility of the system was demonstrated with a kanamycin resistance gene as a model foreign insert into Pseudomonas putida and a melanin gene from Streptomyces antibioticus into Klebsiella pneumoniae. Because of the modular nature of the functional parts of the cloning vectors, they can be easily modified and further selection markers can be incorporated. The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations (e.g., in open systems and natural environments), and that do not carry antibiotic resistance markers characteristic of most available cloning vectors (as is currently required of live bacterial vaccines). | 1990 | 2172216 |
| 360 | 12 | 0.9990 | Broad host range cloning vectors for gram-negative bacteria. A series of cloning vectors has been constructed based on the broad-host-range plasmid R300B. One of these vectors, pGSS33, has a size of 13.4 kb and carries four antibiotic resistance genes [ampicillin (Apr), chloramphenicol (Cmr), streptomycin (Smr) and tetracycline (Tcr)], all of which have restriction sites for insertional inactivation. The derivation, structure and uses of the plasmids are described. | 1984 | 6092235 |
| 391 | 13 | 0.9990 | New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli. | 1989 | 2551782 |
| 263 | 14 | 0.9990 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 383 | 15 | 0.9990 | Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Broad-host-range, conjugative vectors with a constitutively expressed gusA gene combined with different antibiotic resistance (tetracycline, gentamicin, kanamycin) genes have been constructed. These plasmids are designed for tracking Gram-negative bacterial strains without the risk of random mutagenesis. We also constructed a set of cassettes containing a promoterless gusA gene linked with different antibiotic resistance genes for making transcriptional fusions and for cassette mutagenesis. New plasmids and cassettes can be useful tools for studying gene expression, interaction of bacteria with plants and monitoring bacteria in the environment. | 2001 | 11348677 |
| 359 | 16 | 0.9990 | Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression. Shuttle vectors capable of replication in both Escherichia coli and Bacteroides fragilis have been developed. Conjugal transfer of these plasmids from E. coli to B. fragilis is facilitated by inclusion of the origin of transfer of the IncP plasmid RK2. The vectors pDK1 and pDK2 provide unique sites for cloning selectable markers in Bacteroides. pOA10 is a cosmid vector containing the replication region of pCP1 necessary for maintenance in Bacteroides. pDK3, pDK4.1, and pDK4.2 contain the Bacteroides clindamycin resistance gene allowing selection and maintenance in B. fragilis of plasmids containing inserted DNA fragments. pDK3 was used to test the expression in B. fragilis of five foreign tetracycline resistance (TcR) genes. The tetA, -B, and -C markers from facultative gram-negative bacteria, as well as a TcR determinant from Clostridium perfringens, did not express TcR in B. fragilis. The tetM gene, originally described in streptococci, encoded a small but reproducible increase of TcR in Bacteroides. These studies demonstrate the utility of shuttle vectors for introducing cloned genes into Bacteroides and underscore the differences in gene expression in these anaerobes. | 1988 | 3071818 |
| 441 | 17 | 0.9989 | Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities. | 1985 | 3994373 |
| 386 | 18 | 0.9989 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 354 | 19 | 0.9989 | New cloning vectors to facilitate quick allelic exchange in gram-negative bacteria. New cloning vectors have been developed with features to enhance quick allelic exchange in gram-negative bacteria. The conditionally replicative R6K and transfer origins facilitate conjugation and chromosomal integration into a variety of bacterial species, whereas the sacB gene provides counterselection for allelic exchange. The vectors have incorporated the lacZ alpha fragment with an enhanced multicloning site for easy blue/white screening and priming sites identified for efficient in vivo assembly or other DNA assembly cloning techniques. Different antibiotic resistance markers allow versatility for use with different bacteria, and transformation into an Escherichia coli strain capable of conjugation enables a quick method for allelic exchange. As a proof of principle, the authors used these vectors to inactivate genes in Vibrio cholerae and Salmonella typhimurium. | 2021 | 33492170 |