Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
356301.0000Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.201425653641
336310.9997Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module (rep and oriV) of other descent. The plasmids differed in composition of the 27.0-28.3 kbp accessory region, each of which carried ISCR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil.200919055690
336220.9996Impact of mesophilic anaerobic digestion and post-treatment of digestates on the transfer of conjugative antimicrobial resistance plasmids. Manure is a major source of antimicrobial-resistant bacteria and resistance genes carried by mobile genetic elements such as plasmids. In France, the number of on-farm biogas plants has increased significantly in recent years. Our study investigated the impact of mesophilic anaerobic digestion (AD) and the post-treatment of digestates on the fate of conjugative plasmids, along with their potential transfer of antimicrobial resistance. Samples of raw manure, digestates and post-treated digestates were collected from three on-farm biogas plants. Conjugative plasmids were captured using the Escherichia coli CV601 recipient strain and media supplemented with rifampicin and kanamycin - to which the recipient strain is resistant - and tetracycline, sulfamethoxazole, gentamicin, trimethoprim, amoxicillin, cefotaxime, ciprofloxacin or colistin. Putative transconjugants were identified and characterised by disc diffusion and whole genome sequencing. The results showed that the antimicrobial resistance genes transferred from the different matrices conferred resistance to tetracyclines, sulphonamides, trimethoprim, and/or streptomycin. Transconjugants were obtained from raw manure samples but not from digestates or post-digestates, suggesting that mesophilic AD processes may produce fewer conjugative plasmids potentially able to be transferred to Enterobacterales.202235963201
355230.9996Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes.200818557938
336440.9995Conjugative transfer of multi-drug resistance IncN plasmids from environmental waterborne bacteria to Escherichia coli. Watersheds contaminated with municipal, hospital, and agricultural residues are recognized as reservoirs for bacteria carrying antibiotic resistance genes (ARGs). The objective of this study was to determine the potential of environmental bacterial communities from the highly contaminated La Paz River basin in Bolivia to transfer ARGs to an Escherichia coli lab strain used as the recipient. Additionally, we tested ZnSO(4) and CuSO(4) at sub-inhibitory concentrations as stressors and analyzed transfer frequencies (TFs), diversity, richness, and acquired resistance profiles. The bacterial communities were collected from surface water in an urban site close to a hospital and near an agricultural area. High transfer potentials of a large set of resistance factors to E. coli were observed at both sites. Whole-genome sequencing revealed that putative plasmids belonging to the incompatibility group N (IncN, IncN2, and IncN3) were predominant among the transconjugants. All IncN variants were verified to be mobile by a second conjugation step. The plasmid backbones were similar to other IncN plasmids isolated worldwide and carried a wide range of ARGs extensively corroborated by phenotypic resistance patterns. Interestingly, all transconjugants also acquired the class 1 integron intl1, which is commonly known as a proxy for anthropogenic pollution. The addition of ZnSO(4) and CuSO(4) at sub-inhibitory concentrations did not affect the transfer rate. Metal resistance genes were absent from most transconjugants, suggesting a minor role, if any, of metals in the spread of multidrug-resistant plasmids at the investigated sites.202236386654
355350.9995Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli. Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear.201627455416
996060.9995Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.202337655671
336070.9995Gentamicin resistance genes in environmental bacteria: prevalence and transfer. A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gm(r)) genes in different non-clinical environments has been performed. We were interested to find out whether Gm(r) genes described from clinical isolates can be detected in different environmental habitats and whether hot spots can be identified. Furthermore, this study aimed to evaluate the impact of selective pressure on the abundance and mobility of resistance genes. The study included samples from soils, rhizospheres, piggery manure, faeces from cattle, laying and broiler chickens, municipal and hospital sewage water, and coastal water. Six clusters of genes coding for Gm-modifying enzymes (aac(3)-I, aac(3)-II/VI, aac(3)-III/IV, aac(6')-II/Ib, ant(2'')-I, aph(2'')-I) were identified based on a database comparison and primer systems for each gene cluster were developed. Gm-resistant bacteria isolated from the different environments had a different taxonomic composition. In only 34 of 207 isolates, mainly originating from sewage, faeces and coastal water polluted with wastewater, were known Gm(r) genes corresponding to five of the six clusters detected. The strains belonged to genera in which the genes had previously been detected (Enterobacteriaceae, Pseudomonas, Acinetobacter) but also to phylogenetically distant bacteria, such as members of the CFB group, alpha- and beta-Proteobacteria. Gm(r) genes located on mobile genetic elements (MGE) could be captured in exogenous isolations into recipients belonging to alpha-, beta- and gamma-Proteobacteria from all environments except for soil. A high proportion of the MGE, conferring Gm resistance isolated from sewage, were identified as IncPbeta plasmids. Molecular detection of Gm(r) genes, and broad host range plasmid-specific sequences (IncP-1, IncN, IncW and IncQ) in environmental DNA indicated a habitat-specific dissemination. A high abundance and diversity of Gm(r) genes could be shown for samples from faeces (broilers, layers, cattle), from sewage, from seawater, collected close to a wastewater outflow, and from piggery manure. In the latter samples all six clusters of Gm(r) genes could be detected. The different kinds of selective pressure studied here seemed to enhance the abundance of MGE, while an effect on Gm(r) genes was not obvious.200219709289
333180.9995Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.201829475864
995990.9995Cryptic environmental conjugative plasmid recruits a novel hybrid transposon resulting in a new plasmid with higher dispersion potential. Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE: Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.202438771049
4531100.9995Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community. Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment.201424860553
3369110.9995On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli. Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1(+) conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1(+) plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1(+) clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.201931247256
3554120.9995Transmissible Plasmids and Integrons Shift Escherichia coli Population Toward Larger Multiple Drug Resistance Numbers. Transmissible plasmids and integrons may play important roles in the persistence and spread of antibiotic-resistant bacteria throughout aquatic environment by accumulating antibiotic resistance genes (ARG). Class 1 and class 2 integron (intI), mobilization (mob), sulfamethoxazole resistance (sul), and trimethoprim resistance (dfr) genes were PCR-amplified and confirmed through DNA sequencing following plasmid extraction from 139 antibiotic-resistant Escherichia coli. E. coli had previously been recovered from wastewater treatment plant effluent and receiving stream water in Northwest Arkansas and isolates had expressed resistance to one to six antibiotics. Almost half of the total isolates (47%) carried putatively transmissible plasmids with mob(F12) gene as the most frequently detected mobilization gene. When two or three mob genes were detected per isolate, there was a significant shift in the population toward larger multiple drug resistance (MDR) number. Class 1 and/or 2 integrons were prevalent (46%), and the presence of integron significantly shifted the isolate population toward larger MDR number. More isolates carried single or coexistence of two or three sul genes (99.3%), and single or a combination up to five dfr genes (89.3%) than had exhibited in vitro resistance to the respective antibiotics. These findings indicate not only the role of the wastewater treatment effluent and the stream environment in coaccumulation of ARG with transmissible plasmids and integrons in multiple antibiotic-resistant E. coli populations but also suggest that density of sul and dfr resistance genes within an isolate may serve as a biomarker for mobile MDR in general.201829058514
3561130.9994Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. OBJECTIVES: Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. METHODS: Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. RESULTS: The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. CONCLUSIONS: Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli.201526124213
3437140.9994Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying ≥ 2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations.201829332216
3359150.9994Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.202337779713
3140160.9994Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and bla(TEM-157) and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.202236371907
3330170.9994Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.201931260930
1771180.9994Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.200319719593
3365190.9994Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BACKGROUND: Conjugation plays a major role in the transmission of plasmids encoding antibiotic resistance genes in both clinical and general settings. The conjugation efficiency is influenced by many biotic and abiotic factors, one of which is the taxonomic relatedness between donor and recipient bacteria. A comprehensive overview of the influence of donor-recipient relatedness on conjugation is still lacking, but such an overview is important to quantitatively assess the risk of plasmid transfer and the effect of interventions which limit the spread of antibiotic resistance, and to obtain parameter values for conjugation in mathematical models. Therefore, we performed a meta-analysis on reported conjugation frequencies from Escherichia coli donors to various recipient species. RESULTS: Thirty-two studies reporting 313 conjugation frequencies for liquid broth matings and 270 conjugation frequencies for filter matings were included in our meta-analysis. The reported conjugation frequencies varied over 11 orders of magnitude. Decreasing taxonomic relatedness between donor and recipient bacteria, when adjusted for confounding factors, was associated with a lower conjugation frequency in liquid matings. The mean conjugation frequency for bacteria of the same order, the same class, and other classes was 10, 20, and 789 times lower than the mean conjugation frequency within the same species, respectively. This association between relatedness and conjugation frequency was not found for filter matings. The conjugation frequency was furthermore found to be influenced by temperature in both types of mating experiments, and in addition by plasmid incompatibility group in liquid matings, and by recipient origin and mating time in filter matings. CONCLUSIONS: In our meta-analysis, taxonomic relatedness is limiting conjugation in liquid matings, but not in filter matings, suggesting that taxonomic relatedness is not a limiting factor for conjugation in environments where bacteria are fixed in space.202032456625