High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
352901.0000High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. BACKGROUND: Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5 g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. FINDINGS: Weaned pigs were fed diets for 4 weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg kg(-1) analytical grade ZnO. DNA extracts from stomach, mid-jejunum, terminal ileum and colon ascendens were amplified by qPCR assays to quantify copy numbers for the tetracycline (tetA) and sulfonamide (sul1) resistance genes in Gram-negative bacteria. Overall, the combined data (n = 336) showed that copy numbers for tetracycline and sulfonamide resistance genes were significantly increased in the high zinc treatment compared to the low (tetA: p value < 10(-6); sul1: p value = 1 × 10(-5)) or intermediate (tetA: P < 1.6 × 10(-4); sul1: P = 3.2 × 10(-4)) zinc treatment. Regarding the time dependent development, no treatment effects were seen 1 week after weaning, but significant differences between high and low/intermediate zinc treatments evolved 2 weeks after weaning. The increased number of tetA and sul1 copies was not confined to the hind gut, but was already present in stomach contents. CONCLUSIONS: The results of this study suggest that the use of high doses of dietary zinc beyond 2 weeks after weaning should be avoided in pigs due to the possible increase of antibiotic resistance in Gram-negative bacteria.201526322131
529110.9998Low-Concentration Ciprofloxacin Selects Plasmid-Mediated Quinolone Resistance Encoding Genes and Affects Bacterial Taxa in Soil Containing Manure. The spread of antimicrobial resistance in environment is promoted at least in part by the inappropriate use of antibiotics in animals and humans. The present study was designed to investigate the impact of different concentrations of ciprofloxacin in soil containing manure on the development of plasmid-mediated quinolone resistance (PMQR) - encoding genes and the abundance of soil bacterial communities. For these studies, high-throughput next-generation sequencing of 16S rRNA, real-time polymerase chain reaction and standard microbiologic culture methods were utilized. We demonstrated that the dissipate rate of relative abundances of some of PMQR-encoding genes, such as qnrS, oqxA and aac(6('))-Ib-cr, were significantly lower with ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared to no-ciprofloxacin control and ciprofloxacin 4 mg/kg exposure during 2 month. Also, the number of ciprofloxacin resistant bacteria was significantly greater in ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared with no-ciprofloxacin control and the ciprofloxacin 4 mg/kg exposure. In addition, lower ciprofloxacin concentration provided a selective advantage for the populations of Xanthomonadales and Bacillales in orders while Agrobacterium, Bacillus, Enterococcus, and Burkholderia in genera. These findings suggest that lower concentration of ciprofloxacin resulted in a slower rate of PMQR-encoding genes dissipation and selected development of ciprofloxacin-resistant bacteria in soil amended with manure.201627847506
312520.9998Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria. The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. RESULT: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry.200414664871
351930.9998Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste. Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria grown at 25 degrees C, 37 degrees C, and 60 degrees C decreased after treatment, but they were still abundant (10(2) to 10(8) most probable number ml(-1)) in the treated swine waste. The presence of 14 genes conferring resistance to tylosin and chlortetracycline was assessed by polymerase chain reaction in bacterial populations grown at 25 degrees C, 37 degrees C, and 60 degrees C, with or without antibiotics. In 22 cases, genes were detected before but not after treatment. The overall gene diversity was wider before [tet(BLMOSY), erm(AB)] than after [tet(LMOS), erm(B)] treatment. Analysis by denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA (rDNA) fragments generally showed a reduction of the bacterial diversity, except for total populations grown at 60 degrees C and for tylosin-resistant populations grown at 37 degrees C. The latter were further investigated by cloning and sequencing their 16S rDNA. Phylotypes found before treatment were all closely related to Enterococcus hirae, whereas six different phylotypes, related to Pseudomonas, Alcaligenes, and Pusillimonas, were found after treatment. This work demonstrated that the aerobic thermophilic biotreatment cannot be considered as a means for preventing the dissemination of aerobic antibiotic-resistant bacteria and their resistance genes to the environment. However, since pathogens do not survive the biotreatment, the effluent does not represent an immediate threat to animal or human health.200919125305
529240.9998Antibiotic-Resistant Bacteria in Hydroponic Lettuce in Retail: A Comparative Survey. Hydroponic produce is gaining popularity due to its suitability for urban agriculture. The general public also considers that hydroponic produce is free from microbiological contamination. In this study, we compared the frequency and abundance of tetracycline-resistant and sulphadiazine-resistant bacteria and the minimal inhibitory concentration (MIC) of these isolates in conventional, organic, and hydroponic lettuce sold in retail. We also determined the frequency of samples carrying tetB, tetX, sul1, sul2, and int1 genes by PCR and further quantified the copy number of tetX, sul1, and int1 genes in samples positive for these genes using qPCR. As expected, the number of resistant bacteria and the MICs of these isolates were lowest in hydroponic lettuce and highest in organic lettuce. All tested resistant genes, except int1, were detected in samples of all three production methods, but no significant difference was observed between the three groups in the frequency of samples carrying the resistance genes examined or in their copy number. To the best of our knowledge, it is the first study directly reporting the existence of antibiotic-resistant bacteria and resistance genes in hydroponic vegetables sold in retail. The result highlights that the risk of antibiotic-resistant bacteria contamination in hydroponic produce should be further investigated.202032967196
353050.9998Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Copper, an essential micronutrient, is supplemented in the diet at elevated levels to reduce morbidity and mortality and to promote growth in feedlot cattle. Gut bacteria exposed to copper can acquire resistance, which among enterococci is conferred by a transferable copper resistance gene (tcrB) borne on a plasmid. The present study was undertaken to investigate whether the feeding of copper at levels sufficient to promote growth increases the prevalence of the tcrB gene among the fecal enterococci of feedlot cattle. The study was performed with 261 crossbred yearling heifers housed in 24 pens, with pens assigned randomly to a 2×2 factorial arrangement of treatments consisting of dietary copper and a commercial linseed meal-based energy protein supplement. A total of 22 isolates, each identified as Enterococcus faecium, were positive for tcrB with an overall prevalence of 3.8% (22/576). The prevalence was higher among the cattle fed diets supplemented with copper (6.9%) compared to normal copper levels (0.7%). The tcrB-positive isolates always contained both erm(B) and tet(M) genes. Median copper MICs for tcrB-positive and tcrB-negative enterococci were 22 and 4 mM, respectively. The transferability of the tcrB gene was demonstrated via a filter-mating assay. Multilocus variable number tandem repeat analysis revealed a genetically diverse population of enterococci. The finding of a strong association between the copper resistance gene and other antibiotic (tetracycline and tylosin) resistance determinants is significant because enterococci remain potential pathogens and have the propensity to transfer resistance genes to other bacteria in the gut.201323666328
353260.9998Transfer of Antibiotic Resistance Plasmid from Commensal E. coli Towards Human Intestinal Microbiota in the M-SHIME: Effect of E. coli dosis, Human Individual and Antibiotic Use. Along with (in) direct contact with animals and a contaminated environment, humans are exposed to antibiotic-resistant bacteria by consumption of food. The implications of ingesting antibiotic-resistant commensal bacteria are unknown, as dose-response data on resistance transfer and spreading in our gut is lacking. In this study, transfer of a resistance plasmid (IncF), harbouring several antibiotic resistance genes, from a commensal E. coli strain towards human intestinal microbiota was assessed using a Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME). More specifically, the effect of the initial E. coli plasmid donor concentration (10(5) and 10(7) CFU/meal), antibiotic treatment (cefotaxime) and human individual (n = 6) on plasmid transfer towards lumen coliforms and anaerobes was determined. Transfer of the resistance plasmid to luminal coliforms and anaerobes was observed shortly after the donor strain arrived in the colon and was independent of the ingested dose. Transfer occurred in all six simulated colons and despite their unique microbial community composition, no differences could be detected in antibiotic resistance transfer rates between the simulated human colons. After 72 h, resistant coliform transconjugants levels ranged from 7.6 × 10(4) to 7.9 × 10(6) CFU(cefotaxime resistant)/Ml colon lumen. Presence of the resistance plasmid was confirmed and quantified by PCR and qPCR. Cefotaxime treatment led to a significant reduction (85%) in resistant coliforms, however no significant effect on the total number of cultivable coliforms and anaerobes was observed.202133670965
712670.9998Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BACKGROUND: Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (n = 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S-rRNA. RESULTS: The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B), tet(C), sul1, sul2, erm(A) tended to increase, and decline thereafter, whereas tet(M) and tet(W) gradually declined over 175 days. At day 7, the concentration of erm(X) was greatest in feces from cattle fed tylosin, compared to all other treatments. CONCLUSION: The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.201121261985
528980.9997Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.201627065407
312690.9997Assessing Class 1 Integron Presence in Poultry Litter Amended with Wood Biochar and Wood Vinegar. Class 1 integrons are mobile genetic elements that facilitate the spread of antibiotic resistance genes among bacteria. The use of prophylactic antibiotics has resulted in the rise of antibiotic resistance genes accumulating in a wide range of settings, including poultry houses and the agricultural fields where poultry litter is applied as a fertilizer. Biochar and wood vinegar are forest products wastes that have generated increasing attention as additives to agricultural soils. The objectives of this study were to observe the prevalence of class 1 integrons in poultry litter blended with biochar and wood vinegar over time and to verify a modified class 1 integron screening assay. Poultry litter blends were sampled and screened for class 1 integrons using polymerase chain reaction, and 80 products, 79 of which showed positive, were sent for DNA sequencing. The GenBank® BLAST database was used to verify the presence of the class 1 integron-integrase gene (intI1). There was no change in prevalence over time in poultry litter blends. Out of 79 PCR products that were intI1 positive, 78 showed at least 95% sequence identity to intI1 encoding bacteria and 64 showed at least 97% sequence identity. This indicates that this method was effective for conducting baseline surveillance of class 1 integrons in poultry litter and poultry litter-blended biochar and/or wood vinegar. Most significantly, class 1 integron prevalence did not decrease over time, further supporting the recalcitrance of these elements and the need for improved monitoring systems.202134459936
3131100.9997Integron-containing bacteria in faeces of cattle from different production systems at slaughter. AIMS: To determine the prevalence and characteristics of integron-containing bacteria in faeces of cattle from grass-fed, lot-fed, or organically produced cattle. METHODS AND RESULTS: Faecal samples from grass-fed (n = 125), lot-fed (n = 125) and organic (n = 135) cattle were tested for the presence of class 1 and class 2 integrons by using PCR and colony hybridisation. The prevalence of class 1 and class 2 integrase were higher in lot-fed cattle (71% and 62%) than grass-fed cattle (52% and 30%) which in turn were higher than organic cattle (25% and 11%). Isolation rates of integron-containing bacteria were reflective of PCR prevalence results. CONCLUSIONS: The antimicrobial resistance genes harboured by the integrons differed little across the three systems and were typically to antimicrobials that would rarely be used therapeutically or for growth promotion purposes. The differences in prevalence observed between the systems may be a function of the intensiveness of each system. SIGNIFICANCE AND IMPACT OF THE STUDY: Integron-containing bacteria may be present in all cattle production systems regardless of the amount of antimicrobial use and confirms that the prudent use of antimicrobials is required so that the development of integrons harbouring genes significant to human medicine is avoided.200919302491
2813110.9997Quantity of the tetracycline resistance gene tet(M) differs substantially between meat at slaughterhouses and at retail. Concentrations of the tetracycline resistance gene tet(M) per square centimeter were assessed in meat from the slaughterhouse (n = 100) and from retail (n = 100) by real-time quantitative PCR. The study revealed a substantial contamination of retail meat with the tetracycline resistance gene tet(M), with a mean of 4.34 log copies per cm² fasces in chicken and 5.58 log copies per cm² fasces in pork. Quantitative resistance gene analysis provides an interesting tool for risk assessment and is becoming increasingly important. For both chicken and pork, tet(M) concentrations were significantly higher in meat at retail, compared to meat at slaughter. Cultural investigations revealed substantial differences in the prevalence of listeria and enterococci, and of E. coli and coliforms, between meat at slaughter (n = 500) and at retail (n = 500). However, the differences in the prevalence of 2 investigated groups of potential tet(M)-carriers (enterococci, listeria) could not sufficiently explain the differences in tet(M) concentrations, since increasing concentrations of tet(M) were accompanied by decreasing prevalences of these potential tet(M)-carriers. The percentage of tetracycline susceptible indicator bacteria (E. faecalis, E. coli) did not differ between meat at slaughter and meat at retail. Higher concentrations of tet(M) at retail might correlate with the proliferation of other genera than enterococci and listeria, but there is also a reason to discuss whether secondary contaminants might carry tet(M) more often than the primary flora of meat. PRACTICAL APPLICATION: We successfully applied the direct quantitative monitoring of resistance genes in meat, which generally might aid as a useful and rapid additional tool for risk assessment. We know that bacteria provide a large pool of resistance genes, which are widely shared between each other-the larger the pool is, the more genes might be exchanged. Thus, in terms of resistance gene monitoring, we should sometimes overcome the restricted view on single bacteria and look at the gene pool, instead.201121729069
2866120.9997Characterization of tetracycline-resistant bacteria in an urbanizing subtropical watershed. AIMS: The objective of this study was to determine whether varying levels of urbanization influence the dominant bacterial species of mildly resistant (0·03 mmol l(-1) tetracycline) and highly resistant (0·06 mmol l(-1) tetracycline) bacteria in sediment and water. Also, the level of urbanization was further evaluated to determine whether the diversity of tetracycline resistance genes present in the isolates and the capability of transferring their resistance were influenced. METHODS AND RESULTS: Sediment and water samples collected from five sampling sites were plated in triplicate on nutrient agar plates with a mild dose (0·03 mmol l(-1) ) and a high dose (0·06 mmol l(-1) ) of tetracycline. Five colonies from each plate plus an additional five from each triplicate group were randomly selected and isolated on nutrient agar containing 0·03 mmol l(-1) tetracycline (400 isolates). The isolates were identified by 16S rRNA gene sequencing and comparison to GenBank using blast. The isolates were also screened for 15 tetracycline resistance genes using a multiplex PCR assay and their ability to transfer resistance through conjugation experiments using a kanamycin-resistant Escherichia. coli K-12 strain labelled with a green fluorescent protein gene. Results from this study indicate that the dominant resistant organisms in this watershed are Acinetobacter spp., Chryseobacterium spp., Serratia spp., Pseudomonas spp., Aeromonas spp. and E. coli. All of these organisms are Gram negative and are closely related to pathogenic species. A majority of the isolates (66%) were capable of transferring their resistance, and there was a greater incidence of tet resistance transfer with increasing urbanization. Also, it was determined that the dominant resistance genes in the watershed are tet(W) and tet(A). CONCLUSION: Urbanization significantly affected dominant tetracycline-resistant bacteria species, but did not affect dominant resistance genes. There was correlation between increased urbanization with an increase in the ability to transfer tetracycline resistance. This indicates that urban areas may select for bacterial species that are capable of transferring resistance. SIGNIFICANCE AND IMPACT OF STUDY: These results indicate that urbanization influences the occurrence of tetracycline-resistant bacteria and the potential for transfer of resistance genes.201323773226
3531130.9997Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). This in vitro model mimics the human intestinal ecosystem and received a single dose of 10(9)E. coli MB6212, which harbors a plasmid known to confer resistance towards several antibiotics including tetracycline, sulfamethoxazole and cefotaxime. Since the degree of stress imposed by stomach pH and bile acids vary with the consumed meal size, the effect of meal size on E. coli donor survival and on plasmid transfer towards lumen and mucosal coliforms and anaerobes was determined. The administered commensal E. coli strain survived stomach acid and bile salt stress and was able to grow in the colon environment during the timeframe of the experiment (72 h). Transfer of antibiotic resistance was observed rapidly since cultivable transconjugant coliforms and anaerobes were already detected in the lumen and mucosa after 2 h in the simulated proximal colon. The presence of the resistance plasmid in the transconjugants was confirmed by PCR. Differences in meal size and adapted digestion had neither a detectable impact on antibiotic resistance transfer, nor on the survival of the E. coli donor strain, nor on short chain fatty acid profiles. The median number of resistant indigenous coliforms in the lumen of the inoculated colon vessels was 5.00 × 10(5) cfu/ml [min - max: 3.47 × 10(4)-3.70 × 10(8) cfu/ml], and on the mucosa 1.44 × 10(7) cfu/g [min-max: 4.00 × 10(3)-4.00 × 10(8) cfu/g]. Exact quantification of the anaerobic transconjugants was difficult, as (intrinsic) resistant anaerobic background microbiota were present. QPCR data supported the observation of plasmid transfer in the simulated colon. Moreover, inoculation of E. coli MB6212 had no significant impact on the microbial diversity in the lumen as determined by 16 S ribosomal gene based next generation sequencing on lumen samples. This study demonstrates that a commensal, antibiotic resistant E. coli strain present in food can transfer its antibiotic resistance plasmid relatively quickly to intestinal microbiota in the M-SHIME. The spread and persistence of antibiotic resistance genes and resistant bacteria in our intestinal system is an alarming scenario which might present clinical challenges, since it implies a potential reservoir for dissemination to pathogenic bacteria.201931536878
5290140.9997Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. OBJECTIVES: The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. MATERIALS AND METHODS: The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. RESULTS: Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. CONCLUSIONS: The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria.201728732786
2867150.9997Enzymatic Activity and Horizontal Gene Transfer of Heavy Metals and Antibiotic Resistant Proteus vulgaris from Hospital Wastewater: An Insight. Globally, the issue of microbial resistance to medicines and heavy metals is getting worse. There are few reports or data available for Proteus vulgaris (P. vulgaris), particularly in India. This investigation intends to reveal the bacteria's ability to transmit genes and their level of resistance as well. The wastewater samples were taken from several hospitals in Lucknow City, India, and examined for the presence of Gram-negative bacteria that were resistant to antibiotics and heavy metals. The microbial population count in different hospital wastewaters decreases with increasing concentrations of metal and antibiotics. Among all the examined metals, Ni and Zn had the highest viable counts, whereas Hg, Cd, and Co had the lowest viable counts. Penicillin, ampicillin, and amoxicillin, among the antibiotics, demonstrated higher viable counts, whereas tetracycline and erythromycin exhibited lower viable counts. The MIC values for the P. vulgaris isolates tested ranged from 50 to 16,00 μg/ml for each metal tested. The multiple metal resistance (MMR) index, which ranged from 0.04 to 0.50, showed diverse heavy metal resistance patterns in all P. vulgaris isolates (in the case of 2-7 metals in various combinations). All of the tested isolates had methicillin resistance, whereas the least number of isolates had ofloxacin, gentamycin, or neomycin resistance. The P. vulgaris isolates displayed multidrug resistance patterns (2-12 drugs) in various antibiotic combinations. The MAR indexes were shown to be between (0.02-0.7). From the total isolates, 98%, 84%, and 80% had urease, gelatinase, and amylase activity, whereas 68% and 56% displayed protease and beta-lactamase activity. Plasmids were present in all the selected resistant isolates and varied in size from 42.5 to 57.0 kb and molecular weight from 27.2 to 37.0 MD. The transmission of the antibiotic/metal resistance genes was evaluated between a total of 7 pairs of isolates. A higher transfer frequency (4.4 × 10(-1)) was observed among antibiotics, although a lower transfer frequency (1.0 × 10(-2)) was observed against metals in both the media from the entire site tested. According to exponential decay, the population of hospital wastewater declined in the following order across all sites: Site II > Site IV > Site III > Site I for antibiotics and site IV > site II > site I >site III for metal. Different metal and antibiotic concentrations have varying effects on the population. The metal-tolerant P. vulgaris from hospital wastewater was studied in the current study had multiple distinct patterns of antibiotic resistance. It could provide cutting-edge methods for treating infectious diseases, which are essential for managing and assessing the risks associated with hospital wastewater, especially in the case of P. vulgaris.202236523753
7121160.9997Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L(-1) of ENR) and poultry litter (up to 70 mg∙kg(-1) of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg(-1) to 9 μg∙kg(-1) after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.202438367114
5345170.9997Spread of antimicrobial resistance genes via pig manure from organic and conventional farms in the presence or absence of antibiotic use. AIMS: Antibiotic-resistant bacteria affect human and animal health. Hence, their environmental spread represents a potential hazard for mankind. Livestock farming is suspected to be a key factor for spreading antibiotic resistance; consumers expect organic farming to imply less environmental health risk. This study aimed to assess the role of manure from organic and conventional farms for spreading antimicrobial resistance (AMR) genes. METHODS AND RESULTS: AMR-genes-namely tet(A), tet(B), tet(M), sul2 and qacE/qacEΔ1 (potentially associated with multiresistance) were quantified by qPCR. Antimicrobial use during the study period was qualitatively assessed from official records in a binary mode (yes/no). Median concentrations were between 6.44 log copy-equivalents/g for tet(A) and 7.85 for tet(M) in organic liquid manure, and between 7.48 for tet(A) and 8.3 for sul2 in organic farmyard manure. In conventional manure, median concentrations were 6.67 log copy-equivalents/g for sul2, 6.89 for tet(A), 6.77 for tet(B) and 8.36 for tet(M). Integron-associated qac-genes reached median concentrations of 7.06 log copy-equivalents/g in organic liquid manure, 7.13 in conventional manure and 8.18 in organic farmyard manure. The use of tetracyclines or sulfonamides increased concentrations of tet(A) and tet(M), or of sul2, respectively. Comparing farms that did not apply tetracyclines during the study, the relative abundance of tet(A) and tet(M) was still higher for conventional piggeries than for organic ones. CONCLUSIONS: Relative abundances of AMR genes were higher in conventional farms, compared to organic ones. Antibiotic use was linked to the relative abundance of AMR-genes. However, due to the bacterial load, absolute concentrations of AMR-genes were comparable between fertilizers of organic and conventional farms. SIGNIFICANCE AND IMPACT OF STUDY: To our knowledge, this is the first absolute quantification of AMR-genes in manure from organic farms. Our study underlines the importance of long-term reduction in the use of antimicrobial agents in order to minimize antibiotic resistance.202235835564
7125180.9997Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. The use of antimicrobials in food animal production leads to the development of antimicrobial resistance (AMR), and animal manure constitutes the largest reservoir of such AMR. In previous studies, composted swine manure was found to contain substantially lower abundance of AMR genes that encode resistance to tetracyclines (tet genes) and macrolide-lincosamide-streptogramin B (MLS(B)) superfamily (erm genes), than manures that were treated by lagoons or biofilters. In this study, temporal changes in AMR carried by both cultivated and uncultivated bacteria present in swine manure during simulated composting and lagoon storage were analyzed. Treatments were designed to simulate the environmental conditions of composting (55°C with modest aeration) and lagoon storage (ambient temperature with modest aeration). As determined by selective plate counting, over a 48-day period, cultivated aerobic heterotrophic erythromycin-resistant bacteria and tetracycline-resistant bacteria decreased by more than 4 and 7 logs, respectively, in the simulated composting treatment while only 1 to 2 logs for both resistant bacterial groups in the simulated lagoon treatment. Among six classes each of erm and tet genes quantified by class-specific real-time PCR assays, the abundance of erm(A), erm(C), erm(F), erm(T), erm(X), tet(G), tet(M), tet(O), tet(T), and tet(W) declined marginally during the first 17 days, but dramatically thereafter within 31 days of the composting treatment. No appreciable reduction of any of the erm or tet genes analyzed was observed during the simulated lagoon treatment. Correlation analysis showed that most of the AMR gene classes had similar persistence pattern over the course of the treatments, though not all AMR genes were destructed at the same rate during the treatments.201221811793
3416190.9997Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. Antibiotic application in plant agriculture is primarily used to control fire blight caused by Erwinia amylovora in pome fruit orchards. In order to facilitate environmental impact assessment for antibiotic applications, we developed and validated culture-independent quantitative real-time PCR multiplex assays for streptomycin (strA, strB, aadA and insertion sequence IS1133) and tetracycline (tetB, tetM and tetW) resistance elements in plant and soil samples. The qPCR were reproducible and consistent whether the DNA was extracted directly from bacteria, plant and soil samples inoculated with bacteria or soil samples prior to and after manure slurry treatment. The genes most frequently identified in soils pre- and post-slurry treatment were strB, aadA, tetB and tetM. All genes tested were detected in soils pre-slurry treatment, and a decrease in relative concentrations of tetB and the streptomycin resistance genes was observed in samples taken post-slurry treatment. These multiplex qPCR assays offer a cost-effective, reliable method for simultaneous quantification of antibiotic resistance genes in complex, environmental sample matrices.201121549164