A comparison of antibiotic resistance genes and mobile genetic elements in wild and captive Himalayan vultures. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
348701.0000A comparison of antibiotic resistance genes and mobile genetic elements in wild and captive Himalayan vultures. As the most widely distributed scavenger birds on the Qinghai-Tibetan Plateau, Himalayan vultures (Gyps himalayensis) feed on the carcasses of various wild and domestic animals, facing the dual selection pressure of pathogens and antibiotics and are suitable biological sentinel species for monitoring antibiotic resistance genes (ARGs). This study used metagenomic sequencing to comparatively investigate the ARGs and mobile genetic elements (MGEs) of wild and captive Himalayan vultures. Overall, the resistome of Himalayan vultures contained 414 ARG subtypes resistant to 20 ARG types, with abundances ranging from 0.01 to 1,493.60 ppm. The most abundant resistance type was beta-lactam (175 subtypes), followed by multidrug resistance genes with 68 subtypes. Decreases in the abundance of macrolide-lincosamide-streptogramin (MLS) resistance genes were observed in the wild group compared with the zoo group. A total of 75 genera (five phyla) of bacteria were predicted to be the hosts of ARGs in Himalayan vultures, and the clinical (102 ARGs) and high-risk ARGs (35 Rank I and 56 Rank II ARGs) were also analyzed. Among these ARGs, twenty-two clinical ARGs, nine Rank I ARG subtypes, sixteen Rank II ARG subtypes were found to differ significantly between the two groups. Five types of MGEs (128 subtypes) were found in Himalayan vultures. Plasmids (62 subtypes) and transposases (44 subtypes) were found to be the main MGE types. Efflux pump and antibiotic deactivation were the main resistance mechanisms of ARGs in Himalayan vultures. Decreases in the abundance of cellular protection were identified in wild Himalayan vultures compared with the captive Himalayan vultures. Procrustes analysis and the co-occurrence networks analysis revealed different patterns of correlations among gut microbes, ARGs, and MGEs in wild and captive Himalayan vultures. This study is the first step in describing the characterization of the ARGs in the gut of Himalayan vultures and highlights the need to pay more attention to scavenging birds.202439006014
686610.9995Deciphering the antibiotic resistome in stratified source water reservoirs in China: Distribution, risk, and ecological drive. The proliferation and dissemination of antibiotic resistance genes (ARGs) in source water reservoirs may pose a threat to human health. This study investigated the antibiotic resistance in stratified reservoirs in China across different seasons and spatial locations. In total, 120 ARG subtypes belonging to 15 ARG types were detected with an abundance ranging from 171.06 to 793.71 × /Gb. Multidrug, tetracycline, aminoglycoside, and bacitracin resistance genes were dominant in the reservoirs. The abundance and transfer potential of ARGs were notably higher, especially during the stratified period, with markedly elevated levels in the bottom layer compared to the surface layer. Metagenomic assembly yielded 1357 ARG-carrying contigs, belonging to 83 resistant bacterial species, of which 13 were identified as human pathogen bacteria (HPB). HPB hosts (Sphingomonas sp., Burkholderiales sp., and Ralstonia sp., etc.) were super carriers of ARGs. Genes including ompR, bacA, golS, and ugd carried on HPB plasmids exhibited higher abundance in the water, warranting attention to the risk of resistance transmission. Environmental pressures have caused a shift in the assembly mechanism of ARGs, transitioning from a random process in surface water to a deterministic process in bottom water. The results of this study will deepen people's understanding of the ARG risk in stratified reservoirs.202539673943
326320.9995Short- and long-read metagenomics insight into the genetic contexts and hosts of mobile antibiotic resistome in Chinese swine farms. Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Intensive swine farms are recognized as hotspots for antibiotic resistance genes (ARGs). However, antibiotic resistome and their genetic contexts, hosts, and transferability in Chinese swine farms remain largely unexplored. Here, we used Illumina and Oxford Nanopore metagenomics sequencing to investigate the antibiotic resistome context of 14 distantly located large-scale (10,000 animals per year) commercial swine farms in China. We identified high abundant and diverse ARGs (609,966.8 with 1433 types, belonging to 38 different antibiotic classes) in all samples, including those encoding resistance to clinically critical important antibiotics (such as mcr, tetX, optrA, poxtA, qnr and bla(CTX-M)). About 75% of the ARGs detected were carried by mobile genetic elements (mainly plasmids), suggesting their high transmission potential into receiving environments. Host-tracking analysis identified Clostridiales, Faecalibacterium prausnitzii and Escherichia coli as the predominant bacterial hosts of mobile ARGs. Notably, genome binning generated 246 high-completeness draft genomes. Genetic context analysis of the multiple resistant (MDR) genes in binned genomes showed the involvement of insertion sequences (ISs), integron and SGI2 genomic island, implying their importance role in promoting the development of MDR bacteria. Overall, these findings substantially expand our current knowledge of mobile antibiotic resistome in Chinese swine farms, and suggest reasonable management of animal wastes in swine farms to reduce the dissemination of antibiotic resistance to the environment.202235259381
686830.9995Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River. As important freshwater ecosystems, the occurrence and distribution of antibiotic resistance genes (ARGs) in rivers are relevant to public health. However, studies investigating ARGs of different environmental media in river ecosystems are limited. In this study, we analyzed the ARGs of microbes in free-living setting, particle-associated setting, sediment and bank soil of the Yangtze River using metagenomics. Twenty-six ARGs were found in all samples regardless of media (core resistome) with a diversity of 8.6 %-34.7 %, accounting for 22.7 %-89.2 % of the relative abundance of the overall ARGs. The core resistome of the Yangtze River was dominated by multidrug resistance genes consisting mainly of efflux pumps and bacitracin resistance genes. The rare resistome was dominated by multidrug, sulfonamide, and aminoglycoside resistance genes. The core resistome was more prevalent in chromosomes, implying that these ARGs with low diversity and high relative abundance may be intrinsic to microbes in the Yangtze River. The rare resistome was more prevalent in plasmids, suggesting these ARGs with high diversity and low relative abundance were acquired under environmental stresses and had transfer potential. Additionally, we found that core and rare resistome were mainly carried by specific bacteria. Noteworthily, twenty-two ARGs of high clinical concern were identified in rare resistome, especially aac(6')-I, sul1, and tetM, which were plasmid-borne and hosted by clinically relevant pathogens. Both core and rare resistome hosts showed the highest niche breadths in particle-associated setting compared to other media, and particle-associated setting could provide more stable and ideal conditions for resistome hosts to survive. This study elucidated the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.202438039820
349040.9995Monitoring and evaluation of antibiotic resistance genes in three rivers in northeast China. Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in selected original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Twenty types of ARG were detected in the water samples. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16S rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide-lincosamide-streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion. The composition of ARGs in three different rivers was similar, indicating that climate plays an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological and geographical distribution characteristics should be further explored.202235122641
327550.9995The hidden threat: Comprehensive assessment of antibiotic and disinfectant resistance in commercial pig slaughterhouses. The presence of antibiotic resistance genes (ARGs), disinfectant resistance genes (DRGs), and pathogens in animal food processing environments (FAPE) poses a significant risk to human health. However, knowledge of the contamination and risk profiles of a typical commercial pig slaughterhouse with periodic disinfectant applications is limited. By creating the overall metagenomics-based behavior and risk profiles of ARGs, DRGs, and microbiomes in a nine-section pig slaughterhouse, an important FAPE in China. A total of 454 ARGs and 84 DRGs were detected in the slaughterhouse with resistance genes for aminoglycosides and quaternary ammonium compounds, respectively. The entire slaughtering chain is a hotspot for pathogens, including 83 human pathogenic bacteria (HPB), with 47 core HPB. In addition, 68 high-risk ARGs were significantly correlated with 55 HPB, 30 of which were recognized as potential bacteria co-resistant to antibiotics and disinfectants, confirm a three-fold risk of ARGs, DRGs, and pathogens prevailing throughout the chain. Pre-slaughter pig house (PSPH) was the major risk source for ARGs, DRGs, and HPB. Moreover, 75 Escherichia coli and 47 Proteus mirabilis isolates showed sensitivity to potassium monopersulfate and sodium hypochlorite, suggesting that slaughterhouses should use such related disinfectants. By using whole genome multi-locus sequence typing and single nucleotide polymorphism analyses, genetically closely related bacteria were identified across distinct slaughter sections, suggesting bacterial transmission across the slaughter chain. Overall, this study underscores the critical role of the PSPH section as a major source of HPB, ARGs, and DRGs contamination in commercial pig slaughterhouses. Moreover, it highlights the importance of addressing clonal transmission and cross-contamination of antibiotic- and disinfectant-resistant bacteria within and between slaughter sections. These issues are primarily attributed to the microbial load carried by animals before slaughter, carcass handling, and content exposure during visceral treatment. Our findings provide valuable insights for One Health-oriented slaughterhouse management practices.202438945230
310960.9995Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Ready-to-eat (RTE) foods have been considered to be reservoirs of antibiotic resistance bacteria, which constitute direct threat to human health, but the potential microbiological risks of RTE foods remain largely unexplored. In this study, the metagenomic approach was employed to characterize the comprehensive profiles of bacterial community and antibiotic resistance gene (ARG) in 18 RTE food samples (8 RTE meat, 7 RTE vegetables and 3 RTE fruit) in southern China. In total, the most abundant phyla in RTE foods were Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes and Actinobacteria. 204 ARG subtypes belonging to 18 ARG types were detected with an abundance range between 2.81 × 10(-5) and 7.7 × 10(-1) copy of ARG per copy of 16S rRNA gene. Multidrug-resistant genes were the most predominant ARG type in the RTE foods. Chloramphenicol, macrolide-lincosamide-streptogramin, multidrug resistance, aminoglycoside, bacitracin, tetracycline and β-lactam resistance genes were dominant, which were also associated with antibiotics used extensively in human medicine or veterinary medicine/promoters. Variation partitioning analysis indicated that the join effect of bacterial community and mobile genetic elements (MGEs) played an important role in the resistome alteration. This study further deepens the comprehensive understanding of antibiotic resistome and the correlations among the antibiotic resistome, microbiota, and MGEs in the RTE foods.202033093543
326970.9995Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propagation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial community structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assessment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people's lives at risk of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches.202335939194
320880.9995Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China. Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (bla(KPC) and bla(VIM)) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying bla(CTX-M-55) were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments.202540732167
530190.9995High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10(9), 10(8), 10(9), and 10(10) copies/g dry feces for tetW, bla(TEM), sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10(7) copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.202032663725
7173100.9995Animal farms are hot spots for airborne antimicrobial resistance. Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 10(2) to 10(4) copies/m(3) and was accompanied by a considerable intensity of MGEs and HPBs (approximately 10(3) copies/m(3)). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 10(2) in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 10(4) copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media.202235985594
3277110.9995Airborne antibiotic resistome and human health risk in railway stations during COVID-19 pandemic. Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.202336731187
5357120.9995Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Antibiotics, antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and mobile genetic elements (MGEs) have been reported in many environments. However, the investigation of their occurrence and diversity in untreated hospital wastewater is still insufficient. High concentrations of antibiotic residues were found in hospital wastewater using solid-phase extraction and UPLC-MS/MS analysis. The concentrations of six of 14 antibiotics reached μg/L levels in the hospital wastewater, which is higher than reported in other aquatic environments. Results of high-throughput sequencing analysis indicated that sequences affiliated to genera Escherichia and Acinetobacter were the predominant in the cultivable multiple-antibiotic-resistant bacteria (CMARB) recovered from the wastewater of three hospitals in China, with compositions of 34%-74%. Notably, several genera containing clinically pathogenic or opportunistic CMARB (e.g., Escherichia, Acinetobacter, Aeromonas, Myroides, Enterococcus, Proteus, Pseudomonas, and Streptococcus) were detected at high relative abundances in the wastewaters of the three hospitals. High-capacity quantitative PCR showed that 131-139 unique ARGs of the 178 targeted genes were detected in the hospital wastewaters. The high prevalence of five MGEs and 12 ARGs was confirmed with qPCR, and some positive correlations between ARGs and MGEs were identified, such as between intI1 and qnrD, intI2 and sul3, intI3 and tetX, Tn916/Tn1545 and sul2, and ISCR1 and sul3. These results suggest that highly abundant antibiotic-resistant pathogens and highly mobile ARGs already exist in the human body, and that their release from hospitals without effective treatment poses high risks to environments and human health.201829054666
3271130.9995Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Mass transit systems, including subways and buses, are useful environments for studying the urban microbiome, as the vast majority of populations in urban areas use public transportation. Microbial communities in urban environments include both human- and environment-associated bacteria that play roles in health and pathogen transmission. In this study, we used shotgun metagenomic sequencing to profile microbial communities sampled from various surfaces found in subway stations and bus stops within the Seoul mass transit system. The metagenomic approach and network analysis were used to investigate broad-spectrum antibiotic resistance genes (ARGs) and their co-occurrence patterns. We uncovered 598 bacterial species in 76 samples collected from various surfaces within the Seoul mass transit system. All samples were dominated by the potential human pathogen Salmonella enterica (40 %) and the human skin bacterium Cutibacterium acnes (19 %). Significantly abundant biomarkers detected in subway station samples were associated with bacteria typically found in the human oral cavity and respiratory tract, whereas biomarkers detected in bus stop samples were associated with bacteria commonly found in soil, water, and plants. Temperature and location had significant effects on microbial community structure and diversity. In total, 41 unique ARG subtypes were identified, associated with single-drug or multidrug resistance to clinically important and extensively used antibiotics, including aminoglycosides, carbapenem, glycopeptide, and sulfonamides. We revealed that Seoul subway stations and bus stops possess unique microbiomes containing potential human pathogens and ARGs. These findings provide insights for refining location-specific responses to reduce exposure to potentially causative agents of infectious diseases, improving public health.202236257123
5370140.9995Airborne antibiotic resistance genes in Hong Kong kindergartens. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) have become a critical global public health issue in this century. There is increasing evidence for the presence and transmission of ARGs by air transmission. In this research, ARGs and ARB in air conditioner filter dust (AC dust) and urine samples from 55 kindergarten children in 17 kindergartens and nearby 10 soil samples in Hong Kong were analyzed. The results showed the presence of 16 ARG subtypes and the mobile genetic element (MGE) intI1 in AC dust, and 12 ARG subtypes in the soil samples. ARGs presenting resistance to sulfonamide (6.9 × 10(-3)-0.17) (expressed as relative abundance of the 16 S rRNA genes) were most abundant followed by macrolides (1.8 × 10(-3)-3.3 × 10(-2)), sul1, sul2 (sulfonamide), ermF (macrolides) and intI1 genes in AC dust in 17 kindergartens. For soil samples, 12 ARG subtypes and the intI1 were detected, and the genes providing resistance to sulfonamide (1.6 × 10(-3)-2.7 × 10(-1)) were the most abundant ARGs in the 10 soil samples, followed by tetracycline (ND-1.4 × 10(-2)). Multi-resistant bacteria with sul1, sul2, intI1, or tetQ were detected in all AC dust samples and some urine samples. Based on bacterial genera and ARG co-occurrence network analysis and Hong Kong's special geographical location and cultural environment, there might be two origins for the ARGs detected in the kindergartens: β-lactam/macrolide ARGs mainly derived from human medicine use and tetracycline/sulfonamide ARGs mainly from other areas, as well as IntI1 may play a role in the spread of ARGs in Hong Kong. The widely detection of ARGs in AC dust in kindergartens in Hong Kong highlights the need for the improvement of management measures.202032041021
3237150.9995Metagenomic analysis reveals antibiotic resistance genes in the bovine rumen. Metagenomics and network analysis were used to profile antibiotic resistance genes (ARGs) and their cooccurrence patterns in bovine rumen microbes. A total of 4941 ruminal microbial genomes and 20 metagenome samples were used in this study. In general, 103 ARG subtypes belonging to 20 ARG types in 79 candidate genomes were identified, showing the broad-spectrum profiles of ARGs in the bovine rumen environment. A wide distribution of genes encoding bacitracin resistance was found among the candidate genomes, suggesting the possibility that bovines might be one of the sources of bacitracin resistance genes. Cooccurrence patterns were found within or between the ARG types, and a positive correlation was found between some ARGs and bacteria, which revealed potential dominant hosts of ARGs. The investigation showed that bovine rumen systems are important ARG reservoirs, and our research might provide a theoretical basis for the evaluation of the harmfulness of ARGs and antibiotic-resistant bacteria (ARB) to food safety and human health.202032561419
3108160.9995Amoxicillin and thiamphenicol treatments may influence the co-selection of resistance genes in the chicken gut microbiota. The aim of this study was to assess the dynamics of microbial communities and antimicrobial resistance genes (ARGs) in the chicken gut following amoxicillin and thiamphenicol treatments and potential co-selection of ARGs. To this purpose, the microbial community composition, using 16S rRNA NGS, and the abundance of ARGs conferring resistance to β-lactams and phenicols, using qPCRs, were determined. Results revealed that the administered antimicrobials did not significantly reduce the gut microbiota diversity, but changed its composition, with taxa (e.g. Gallibacterium and Megamonas) being enriched after treatment and replacing other bacteria (e.g. Streptococcus and Bifidobacterium). Positive correlations were found between ARGs (e.g. cmlA, bla(CMY-2), and bla(SHV)) and the relative abundance of specific taxa (e.g. Lactobacillus and Subdoligranulum). The selective pressure exerted by both amoxicillin and thiamphenicol resulted in an increased abundance of ARGs conferring resistance to β-lactams (e.g. bla(TEM-1), bla(SHV,) and bla(CTX-M1-like)) and phenicols (e.g. floR and cmlA). These findings, together with the co-occurrence of genes conferring resistance to the two antimicrobial classes (e.g. bla(TEM-1) and cmlA), suggest a possible interaction among antimicrobials on resistance emergence, possibly due to the presence of mobile genetic elements (MGEs) carrying multiple resistance determinants.202236437351
3206170.9995High pollution and health risk of antibiotic resistance genes in rural domestic sewage in southeastern China: A study combining national-scale distribution and machine learning. Rural domestic sewage has emerged as an important reservoir of antibiotic resistance genes (ARGs) under rapid urbanization, while the national-scale geographical patterns and risks of ARGs remaining unclear. We investigated ARG pollution in rural domestic sewage across 39 sites in 22 Chinese provinces using metagenomic sequencing, identifying 702 ARG subtypes across 21 types. Multidrug resistance genes were predominant in the shared ARGs, accounting for 58.96 % of the total ARG abundance. Host bacteria analysis revealed Klebsiella pneumoniae and Escherichia coli were the main pathogenic-resistant bacteria. Southeastern China exhibited the highest level of ARG pollution in rural domestic sewage, followed by south-central, northern, and western. This ARG pollution was primarily caused by human/animal feces based on ARG indicators. Partial least-squares path model and partial redundancy analysis highlighted antibiotics as the primary driver, explaining 24.16 % of ARG variation, with sulfamethazine, norfloxacin, and ofloxacin identified as priority control targets. Risk assessment by calculating the risk index indicated 24.58 % of detected ARGs posed potential health threats, particularly multidrug resistance. Machine learning models predicted higher ARG risks in rural domestic sewage from southeastern China with intensive human activity. This study underscores the crucial impact of antibiotics in ARG proliferation and risk in rural domestic sewage.202540701495
3212180.9995Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH(4)(+)-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments.202235934031
5300190.9995From Pig Breeding Environment to Subsequently Produced Pork: Comparative Analysis of Antibiotic Resistance Genes and Bacterial Community Composition. It is well verified that pig farms are an important reservoir and supplier of antibiotic resistance genes (ARGs). However, little is known about the transmission of ARGs between the breeding environment and subsequently produced pork. This study was conducted to investigate if ARGs and associated host bacteria spread from the breeding environment onto the meat through the food production chain. We thus analyzed the occurrence and abundance of ARGs, as well as comparing both ARG and bacterial community compositions in farm soil, pig feces and pork samples from a large-scale pig farm located in Xiamen, People's Republic of China. Among the 26 target ARGs, genes conferring resistance to sulfonamide, trimethoprim, aminoglycoside, chloramphenicol, macrolide, florfenicol, and tetracycline were observed at high frequency in both the pig breeding environment and pork. The prevalence of ARGs in pork was surprisingly consistent with breeding environments, especially between the pork and feces. The relative abundance of 10 representative ARGs conferring resistance to six classes of antibiotics ranged from 3.01 × 10(-1) to 1.55 × 10(-6) copies/16S rRNA copies. The ARGs conferring resistance to sulfanilamide (sulI and sulII), aminoglycoside (aadA), and tetracycline [tet(A) and tet(M)] were most highly abundant across most samples. Samples from feces and meat possessed a higher similarity in ARG compositions than samples from the farms soil. Enterobacteriaceae found on the meat samples were further identical with previously isolated multidrug-resistant bacteria from the same pig farm. Our results strongly indicate that ARGs can be potentially spreading from pig breeding environment to meat via the pork industry chain, such as feed supply, pig feeding and pork production.201930761096