# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3439 | 0 | 1.0000 | The widespread dissemination of integrons throughout bacterial communities in a riverine system. Anthropogenic inputs increase levels of antimicrobial resistance (AMR) in the environment, however, it is unknown how these inputs create this observed increase, and if anthropogenic sources impact AMR in environmental bacteria. The aim of this study was to characterise the role of waste water treatment plants (WWTPs) in the dissemination of class 1 integrons (CL1s) in the riverine environment. Using sample sites from upstream and downstream of a WWTP, we demonstrate through isolation and culture-independent analysis that WWTP effluent significantly increases both CL1 abundance and antibiotic resistance in the riverine environment. Characterisation of CL1-bearing isolates revealed that CL1s were distributed across a diverse range of bacteria, with identical complex genetic resistance determinants isolated from both human-associated and common environmental bacteria across connected sites. Over half of sequenced CL1s lacked the 3'-conserved sequence ('atypical' CL1s); surprisingly, bacteria carrying atypical CL1s were on average resistant to more antibiotics than bacteria carrying 3'-CS CL1s. Quaternary ammonium compound (QAC) resistance genes were observed across 75% of sequenced CL1 gene cassette arrays. Chemical data analysis indicated high levels of boron (a detergent marker) downstream of the WWTP. Subsequent phenotypic screening of CL1-bearing isolates demonstrated that ~90% were resistant to QAC detergents, with in vitro experiments demonstrating that QACs could solely select for the transfer of clinical antibiotic resistance genes to a naive Escherichia coli recipient. In conclusion, this study highlights the significant impact of WWTPs on environmental AMR, and demonstrates the widespread carriage of clinically important resistance determinants by environmentally associated bacteria. | 2018 | 29374269 |
| 3424 | 1 | 0.9996 | Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. In this study, we quantified eleven antibiotic compounds and nine antibiotic resistance genes (ARGs) in water samples collected upstream and downstream of the discharge point from a municipal wastewater treatment plant (WWTP) into the Ter River. Antibiotics were analyzed by liquid chromatography coupled to mass spectrometry, whereas the concentration of ARGs in bacterial, phage and plasmid DNA fractions was determined by real-time PCR to explore their contribution to environmental antibiotic resistance. WWTP discharges resulted in higher concentrations of antibiotic residues as well as ARGs in water samples collected downstream the impact point. Specifically, genes conferring resistance to macrolides (ermB), fluoroquinolones (qnrS) and tetracyclines (tetW) showed significant differences (p<0.05) between upstream and downstream sites in the three DNA fractions (i.e. bacteria, plasmids and phages). Interestingly, genes conferring resistance to β-lactams (bla(TEM), bla(NDM) and bla(KPC)) and glycopeptides (vanA) only showed significant differences (p<0.05) between upstream and downstream sites in phage and plasmid DNA but not in the bacterial DNA fraction. Our results show for the first time the extent to which phages and plasmids contribute to the mobilization of ARGs in an aquatic environment exposed to chronic antibiotic pollution via WWTP discharges. Accordingly, these mobile genetic elements should be included in further studies to get a global view of the spread of antibiotic resistance. | 2017 | 28551539 |
| 7395 | 2 | 0.9996 | Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The impact of human activity on the selection for antibiotic resistance in the environment is largely unknown, although considerable amounts of antibiotics are introduced through domestic wastewater and farm animal waste. Selection for resistance may occur by exposure to antibiotic residues or by co-selection for mobile genetic elements (MGEs) which carry genes of varying activity. Class 1 integrons are genetic elements that carry antibiotic and quaternary ammonium compound (QAC) resistance genes that confer resistance to detergents and biocides. This study aimed to investigate the prevalence and diversity of class 1 integron and integron-associated QAC resistance genes in bacteria associated with industrial waste, sewage sludge and pig slurry. We show that prevalence of class 1 integrons is higher in bacteria exposed to detergents and/or antibiotic residues, specifically in sewage sludge and pig slurry compared with agricultural soils to which these waste products are amended. We also show that QAC resistance genes are more prevalent in the presence of detergents. Studies of class 1 integron prevalence in sewage sludge amended soil showed measurable differences compared with controls. Insertion sequence elements were discovered in integrons from QAC contaminated sediment, acting as powerful promoters likely to upregulate cassette gene expression. On the basis of this data, >1 × 10(19) bacteria carrying class 1 integrons enter the United Kingdom environment by disposal of sewage sludge each year. | 2011 | 21368907 |
| 3330 | 3 | 0.9996 | Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens. | 2019 | 31260930 |
| 3677 | 4 | 0.9995 | Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. | 2014 | 24637153 |
| 3469 | 5 | 0.9995 | Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. The spread of antibiotic resistance among bacterial pathogens is to a large extent mediated by mobile antibiotic resistance genes (ARGs). The prevalence and geographic distribution of several newly discovered ARGs, as well as some clinically important ARGs conferring resistance to last resort antibiotics, are largely unknown. Targeted analysis of wastewater samples could allow estimations of carriage in the population connected to the sewers as well as release to the environment. Here we quantified ARGs conferring resistance to linezolid (optrA and cfr(A)) and colistin (mcr-1, -2, -3, -4 and -5) and the recently discovered gar (aminoglycoside ARG) and sul4 (sulphonamide ARG) in raw hospital and municipal wastewater as well as treated municipal wastewater during five years in a low antibiotic resistance prevalence setting (Gothenburg, Sweden). Additionally, variations in bacterial composition of the wastewaters characterized by 16S rRNA sequencing were related to the variations of the ARGs in an attempt to reveal if the presence of known or suspected bacterial host taxa could explain the presence of the ARGs in wastewater. The mcr-1, mcr-3, mcr-4, mcr-5, sul4 and gar genes were detected regularly in all types of wastewater samples while optrA and cfr(A) were detected only in hospital wastewater. The most abundant genes were mcr-3 and mcr-5, especially in municipal wastewater. The detection of optrA was restricted to a peak during one year. Most of the ARGs correlated with taxa previously described as bacterial hosts and associated with humans. Although some of the tentative hosts may include bacteria also thriving in wastewater environments, detection of the ARGs in the wastewaters could reflect their presence in the gut flora of the contributing populations. If so, they could already today or in the near future hinder treatment of bacterial infections in a setting where they currently are rarely targeted/detected during clinical surveillance. | 2022 | 34748849 |
| 3331 | 6 | 0.9995 | Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments. | 2018 | 29475864 |
| 3345 | 7 | 0.9995 | Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. A growing body of evidence indicates that anthropogenic activities can result in increased prevalence of antimicrobial resistance genes (ARGs) in bacteria in natural environments. Many environmental studies have used next-generation sequencing methods to sequence the metagenome. However, this approach is limited as it does not identify divergent uncharacterized genes or demonstrate activity. Characterization of ARGs in environmental metagenomes is important for understanding the evolution and dissemination of resistance, as there are several examples of clinically important resistance genes originating in environmental species. The current study employed a functional metagenomic approach to detect genes encoding resistance to extended spectrum β-lactams (ESBLs) and carbapenems in sewage sludge, sludge amended soil, quaternary ammonium compound (QAC) impacted reed bed sediment and less impacted long term curated grassland soil. ESBL and carbapenemase genes were detected in sewage sludge, sludge amended soils and QAC impacted soil with varying degrees of homology to clinically important β-lactamase genes. The flanking regions were sequenced to identify potential host background and genetic context. Novel β-lactamase genes were found in Gram negative bacteria, with one gene adjacent to an insertion sequence ISPme1, suggesting a recent mobilization event and/ the potential for future transfer. Sewage sludge and quaternary ammonium compound (QAC) rich industrial effluent appear to disseminate and/or select for ESBL genes which were not detected in long term curated grassland soils. This work confirms the natural environment as a reservoir of novel and mobilizable resistance genes, which may pose a threat to human and animal health. | 2019 | 31487611 |
| 3455 | 8 | 0.9995 | Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream. To control the antibiotic resistance epidemic, it is necessary to understand the distribution of genetic material encoding antibiotic resistance in the environment and how anthropogenic inputs, such as wastewater, affect this distribution. Approximately two-thirds of antibiotics administered to humans are beta-lactams, for which the predominant bacterial resistance mechanism is hydrolysis by beta-lactamases. Of the beta-lactamases, the TEM family is of overriding significance with regard to diversity, prevalence, and distribution. This paper describes the design of DNA probes universal for all known TEM beta-lactamase genes and the application of a quantitative PCR assay (also known as Taqman) to quantify these genes in environmental samples. The primer set was used to study whether sewage, both treated and untreated, contributes to the spread of these genes in receiving waters. It was found that while modern sewage treatment technologies reduce the concentrations of these antibiotic resistance genes, the ratio of bla(TEM) genes to 16S rRNA genes increases with treatment, suggesting that bacteria harboring bla(TEM) are more likely to survive the treatment process. Thus, beta-lactamase genes are being introduced into the environment in significantly higher concentrations than occur naturally, creating reservoirs of increased resistance potential. | 2009 | 18997031 |
| 3872 | 9 | 0.9995 | Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. | 2014 | 24636906 |
| 3478 | 10 | 0.9995 | Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Emerging antimicrobial resistance is a major threat to human's health in the 21(st) century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6')-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. | 2017 | 28094345 |
| 3680 | 11 | 0.9995 | Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment. | 2018 | 30459724 |
| 5350 | 12 | 0.9995 | Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. BACKGROUND: Point sources such as wastewater treatment plants (WWTPs) commonly discharge their effluent into rivers. Their waste may include antibiotic residues, disinfectants, antibiotic resistant bacteria (ARB), and Antimicrobial Resistance Genes (ARG). There is evidence that ARG can be found in the natural environment, but attribution to specific point sources is lacking. OBJECTIVES: The goal of this study was to assess the release and dissemination of ARG from three WWTPs in southern Chile via two pathways: through the river systems, and through wild birds. METHODS: A longitudinal study was conducted, collecting river sediment samples at different distances both upstream and downstream from each WWTP. Wild birds were sampled from around one of the WWTPs once a month for 13 months. A microfluidic q-PCR approach was used to quantify 48 genes covering different molecular mechanisms of resistance, and data was analyzed using ordination methods and linear mixed regression models. RESULTS: There was a statistically significant increase downstream from the WWTPs (p < 0.05) for 17 ARG, but the downstream dissemination through the rivers was not clear. Beta-lactamase genes bla(KPC), bla(TEM), and bla(SHV) were the most abundant in birds, with higher abundance of bla(SHV) in migratory species compared to resident species (p < 0.05). The gene profile was more similar between the migratory and resident bird groups compared to the WWTP gene profile. CONCLUSIONS: While results from this study indicate an influence of WWTPs on ARG abundance in the rivers, the biological significance of this increase and the extent of the WWTPs influence are unclear. In addition, wild birds were found to play a role in disseminating ARG, although association to the specific WWTP could not be ascertained. | 2020 | 31722832 |
| 7400 | 13 | 0.9995 | Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria. | 2021 | 33631686 |
| 3186 | 14 | 0.9995 | Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Efficient sewage treatment is critical for limiting environmental transmission of antibiotic-resistant bacteria. In many low and middle income countries, however, large proportions of sewage are still released untreated into receiving water bodies. In-depth knowledge of how such discharges of untreated urban waste influences the environmental resistome is largely lacking. Here, we highlight the impact of uncontrolled discharge of partially treated and/or untreated wastewater on the structure of bacterial communities and resistome of sediments collected from Mutha river flowing through Pune city in India. Using shotgun metagenomics, we found a wide array (n = 175) of horizontally transferable antibiotic resistance genes (ARGs) including carbapenemases such as NDM, VIM, KPC, OXA-48 and IMP types. The relative abundance of total ARGs was 30-fold higher in river sediments within the city compared to upstream sites. Forty four ARGs, including the tet(X) gene conferring resistance to tigecycline, OXA-58 and GES type carbapenemases, were significantly more abundant in city sediments, while two ARGs were more common at upstream sites. The recently identified mobile colistin resistance gene mcr-1 was detected only in one of the upstream samples, but not in city samples. In addition to ARGs, higher abundances of various mobile genetic elements were found in city samples, including integron-associated integrases and ISCR transposases, as well as some biocide/metal resistance genes. Virulence toxin genes as well as bacterial genera comprising many pathogens were more abundant here; the genus Acinetobacter, which is often associated with multidrug resistance and nosocomial infections, comprised up to 29% of the 16S rRNA reads, which to our best knowledge is unmatched in any other deeply sequenced metagenome. There was a strong correlation between the abundance of Acinetobacter and the OXA-58 carbapenemase gene. Our study shows that uncontrolled discharge of untreated urban waste can contribute to an overall increase of the abundance and diversity of ARGs in the environment, including those conferring resistance to last-resort antibiotics. | 2017 | 28780361 |
| 3364 | 15 | 0.9995 | Conjugative transfer of multi-drug resistance IncN plasmids from environmental waterborne bacteria to Escherichia coli. Watersheds contaminated with municipal, hospital, and agricultural residues are recognized as reservoirs for bacteria carrying antibiotic resistance genes (ARGs). The objective of this study was to determine the potential of environmental bacterial communities from the highly contaminated La Paz River basin in Bolivia to transfer ARGs to an Escherichia coli lab strain used as the recipient. Additionally, we tested ZnSO(4) and CuSO(4) at sub-inhibitory concentrations as stressors and analyzed transfer frequencies (TFs), diversity, richness, and acquired resistance profiles. The bacterial communities were collected from surface water in an urban site close to a hospital and near an agricultural area. High transfer potentials of a large set of resistance factors to E. coli were observed at both sites. Whole-genome sequencing revealed that putative plasmids belonging to the incompatibility group N (IncN, IncN2, and IncN3) were predominant among the transconjugants. All IncN variants were verified to be mobile by a second conjugation step. The plasmid backbones were similar to other IncN plasmids isolated worldwide and carried a wide range of ARGs extensively corroborated by phenotypic resistance patterns. Interestingly, all transconjugants also acquired the class 1 integron intl1, which is commonly known as a proxy for anthropogenic pollution. The addition of ZnSO(4) and CuSO(4) at sub-inhibitory concentrations did not affect the transfer rate. Metal resistance genes were absent from most transconjugants, suggesting a minor role, if any, of metals in the spread of multidrug-resistant plasmids at the investigated sites. | 2022 | 36386654 |
| 3456 | 16 | 0.9995 | Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (bla(TEM), bla(CTX-M-1) group, bla(CTX-M-9) group, bla(OXA-48), bla(VIM), mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered. | 2018 | 29567433 |
| 4987 | 17 | 0.9995 | The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. One Health field-based approaches are needed to connect the occurrence of antibiotics present in the environment with the presence of antibiotic resistance genes (ARGs) in Gram-negative bacteria that confer resistance to antibiotics important in for both veterinary and human health. Water samples from two Nebraska watersheds influenced by wastewater effluent and agricultural runoff were tested for the presence of antibiotics used in veterinary and human medicine. The water samples were also cultured to identify the bacteria present. Of those bacteria isolated, the Gram-negative rods capable of causing human infections had antimicrobial susceptibility testing and whole-genome sequencing (WGS) performed to identify ARGs present. Of the 211 bacterial isolates identified, 37 belonged to pathogenic genera known to cause human infections. Genes conferring resistance to beta-lactams, aminoglycosides, fosfomycins, and quinolones were the most frequently detected ARGs associated with horizontal gene transfer (HGT) in the watersheds. WGS also suggest recent HGT events involving ARGs transferred between watershed isolates and bacteria of human and animal origins. The results of this study demonstrate the linkage of antibiotics and bacterial ARGs present in the environment with potential human and/or veterinary health impacts. IMPORTANCE One health is a transdisciplinary approach to achieve optimal health for humans, animals, plants and their shared environment, recognizing the interconnected nature of health in these domains. Field based research is needed to connect the occurrence of antibiotics used in veterinary medicine and human health with the presence of antibiotic resistance genes (ARGs). In this study, the presence of antibiotics, bacteria and ARGs was determined in two watersheds in Nebraska, one with agricultural inputs and the other with both agricultural and wastewater inputs. The results presented in this study provide evidence of transfer of highly mobile ARG between environment, clinical, and animal-associated bacteria. | 2022 | 35311538 |
| 3417 | 18 | 0.9995 | tet genes as indicators of changes in the water environment: relationships between culture-dependent and culture-independent approaches. The aim of this study was to identify tetracycline resistance determinants that could be used as molecular indicators of anthropogenic changes in aquatic environments. Two parallel approaches were used to examine the prevalence of tet genes: a culture-based method involving standard PCR and a method relying on quantitative PCR. The studied site was the Łyna River in Olsztyn (Poland). The culture-dependent method revealed that the concentrations of doxycycline-resistant bacteria harboring the tet(B) gene were higher in wastewater and downstream river samples than in upstream water samples. The tet(B) gene was transferred from environmental bacteria to Escherichia coli. The results generated by the culture-independent method validated statistically significant differences in tet(B) concentrations between upstream and downstream river sections, and revealed that tet(B) levels were correlated with the presence of other tetracycline resistance genes, dissolved oxygen concentrations, temperature and doxycycline concentrations in water. Our findings indicate that doxycycline-resistant bacteria, in particular E. coli harboring tet(B) or increased concentrations of tet(B), are potentially robust indicators of changes in water environments. | 2015 | 25461073 |
| 3422 | 19 | 0.9995 | Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability. | 2016 | 27079455 |