Illustration on phenotypic and genotypic characteristics of typical multi-antibiotic resistant bacteria in aquatic environments through complete genomes and comparative genomics. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
343501.0000Illustration on phenotypic and genotypic characteristics of typical multi-antibiotic resistant bacteria in aquatic environments through complete genomes and comparative genomics. Antibiotic-resistant bacteria, especially multi-antibiotic-resistant bacteria (MARBs), greatly threaten environmental safety and human health. However, studies on the phenotypic resistance and complete genotypic characterization of MARB in aquatic environments are lacking. In this study, a multi-resistant superbug (TR3) was screened by the selective pressure of multi-antibiotics from the activated sludge of the aeration tanks of urban wastewater treatment plants (WWTPs) in 5 different regions of China. Based on the 16 S rDNA sequence alignment it was found that the sequence similarity between strain TR3 and Aeromonas was as high as 99.50%. The genome-wide sequence showed that the base content of the chromosome of strain TR3 is 4,521,851 bp. It contains a plasmid with a length of 9182 bp. All antibiotic resistance genes (ARGs) of strain TR3 are located on the chromosome, which means that it has passage stability. There are multiple types of resistance genes in the genome and plasmid of strain TR3, enduing it with resistance to 5 antibiotics (ciprofloxacin, tetracycline, ampicillin, clarithromycin, and kanamycin), accompanied by the strongest resistance to kanamycin (aminoglycosides) and the worst resistance to clarithromycin (quinolones). From the perspective of gene expression, we show the resistance mechanism of strain TR3 to different types of antibiotics. In addition, the potential pathogenicity of strain TR3 is also discussed. Chlorine and ultraviolet (UV) sterilization on strain TR3 showed that UV is ineffective at low intensity, and it is easy to be revived by light. A low concentration of hypochlorous acid is effective for sterilization, but it can cause the release of DNA, becoming a potential source of ARGs discharged from WWTPs to environmental water bodies.202337394187
370210.9997Antibiotic and metal resistance of Stenotrophomonas maltophilia isolates from Eboling permafrost of the Tibetan Plateau. Whole-genome sequencing of pathogenic bacteria Stenotrophomonas maltophilia from a less polluted environment of permafrost can help understand the intrinsic resistome of both antibiotics and metals. This study aimed to examine the maximum minimum inhibitory concentration (MIC) of both antibiotics and metals, as well as antibiotic resistance genes and metal resistance genes annotated from whole-genome sequences. The permafrost S. maltophilia was sensitive to ciprofloxacin, tetracycline, streptomycin, and bacitracin, and resistant to chloramphenicol, trimethoprim-sulfamethoxazole, erythromycin, Zn(2+), Ni(2+), Cu(2+), and Cr(6+), with a lower maximum MIC, compared with clinical S. maltophilia. The former strain belonged to the lower antibiotic resistance gene (ARG) and metal resistance gene (MRG) clusters compared with the latter ones. The permafrost strain contained no or only one kind of ARG or MRG on a single genomic island, which explained the aforementioned lower maximum MIC and less diversity of ARGs or MRGs. The result indicated that the co-occurrence of antibiotic and metal resistance was due to a certain innate ability of S. maltophilia. The continuous human use of antibiotics or metals induced selective pressure, resulting in higher MIC and more diverse ARGs and MRGs in human-impacted environments.202336097311
335720.9996Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.200919389756
343730.9996Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying ≥ 2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations.201829332216
313840.9996Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. Antibiotic resistance genes (ARGs) that distributed in antibiotic resistant bacteria (ARBs) are widespread in aquaculture and have great threats to the aquatic organism as well as to human. However, our understanding about the risk of ARGs to the health of aquatic organism is still limited. In the present study, we got a deep insight into the diversity of ARGs in the intestinal bacteria of shrimp by culture-dependent and independent approaches. Results of the PCR-based detection and culture-dependent analysis indicated that the tetracycline, sulfadiazine, quinolone and erythromycin resistance genes were prevalent in the commercial shrimps that bought from aquatic markets or supermarket. The culture-independent plasmid metagenomic analysis identified 62 different ARGs, which were classified into 21 types, with abundances ranging from 13 to 1418 ppm. The analysis suggested that most of the ARGs come from the plasmids originating from Vibrio (accounted for 2.8-51%) and Aeromonas (accounted for 16-55%), and the Vibrio group was concluded to be the main bacterial pathogen that probably resulted in the shrimp disease. Accordingly, the plasmid metagenomic that focuses on the mobile genetic elements has great potential on the identification of ARGs in complex environments.201930735978
340850.9996The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to beta-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system.200415318485
370360.9996Antibiotic resistance patterns of metal-tolerant bacteria isolated from an estuary. Estuarine bacteria isolated on metal-containing media were also found to be antibiotic resistant; ampicillin and chloramphenicol were the antibiotics to which resistance was most common. Patterns of antibiotic resistance were found associated with a variety of taxa.1977921251
453270.9996Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. The external environment, particularly wastewater treatment plants (WWTPs), where environmental bacteria meet human commensals and pathogens in large numbers, has been highlighted as a potential breeding ground for antibiotic resistance. We have isolated the extensively drug-resistant Ochrobactrum intermedium CCUG 57381 from an Indian WWTP receiving industrial wastewater from pharmaceutical production contaminated with high levels of quinolones. Antibiotic susceptibility testing against 47 antibiotics showed that the strain was 4 to >500 times more resistant to sulfonamides, quinolones, tetracyclines, macrolides, and the aminoglycoside streptomycin than the type strain O. intermedium LMG 3301T. Whole-genome sequencing identified mutations in the Indian strain causing amino acid substitutions in the target enzymes of quinolones. We also characterized three acquired regions containing resistance genes to sulfonamides (sul1), tetracyclines [tet(G) and tetR], and chloramphenicol/florfenicol (floR). Furthermore, the Indian strain harbored acquired mechanisms for horizontal gene transfer, including a type I mating pair-forming system (MPFI), a MOBP relaxase, and insertion sequence transposons. Our results highlight that WWTPs serving antibiotic manufacturing may provide nearly ideal conditions for the recruitment of resistance genes into human commensal and pathogenic bacteria.201324038701
347180.9996The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. The emergence of clinically relevant β-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of β-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu(2+) and Zn(2+)) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu(2+) and Zn(2+)) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.202133035873
342190.9996Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB.201829898509
3681100.9996A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
3422110.9996Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.201627079455
3373120.9996Evidence of Increased Antibiotic Resistance in Phylogenetically-Diverse Aeromonas Isolates from Semi-Intensive Fish Ponds Treated with Antibiotics. The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance.201627965628
5354130.9996Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system. During the past years, antibiotic-resistant bacteria (ARB) leading for the spreading of antibiotic resistance genes (ARGs) became a global problem, especially multidrug-resistant (MDR) bacteria are considered the prime culprit of antibiotic resistance. However, the correlation between the antibiotic-resistant phenotype and the ARG profiles remains poorly understood. In the present study, metagenomic functional screening and metagenomic analysis of coliforms were combined to explore the phenotype and genotype of the ARBs from municipal sewage. Our results showed that the ARG co-occurrence was widespread in the municipal sewage. The present study also highlighted the high abundance of ARGs from antibiotic resistance coliforms especially the MDR coliforms with ARG level of 33.8 ± 4.2 copies per cell. The ARG profiles and the antibiotic resistance phenotypes of the isolated antibiotic resistant coliforms were also correlated and indicated that the resistance to the related antibiotic (ampicillin, kanamycin, erythromycin, chloramphenicol, and tetracycline) was mostly contributed by the ARGs belonging to the subtypes of β-lactamase, aminoglycoside 3-phosphotransferase, phosphotransferase type 2, chloramphenicol acetyltransferase, tetA, etc.201729034431
3370140.9996Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.201323247295
4571150.9996Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood.201424956077
3358160.9996Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.202133515651
3872170.9996Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes.201424636906
3470180.9996A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.201324204801
3359190.9996Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.202337779713