Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
341501.0000Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches. The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was determined in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic resistance genes when comparing individual sampling and pooling methods. qPCR on pooled samples was found to be a good representative for the general resistance level in a pig herd compared to the coliform CFU counts. It had significantly reduced relative standard deviations compared to coliform CFU counts in the same samples, and therefore differences in antibiotic resistance levels between samples were more readily detected. To our knowledge, this is the first study to describe sampling and pooling methods for qPCR quantification of antibiotic resistance genes in total DNA extracted from swine feces.201526114765
341710.9998tet genes as indicators of changes in the water environment: relationships between culture-dependent and culture-independent approaches. The aim of this study was to identify tetracycline resistance determinants that could be used as molecular indicators of anthropogenic changes in aquatic environments. Two parallel approaches were used to examine the prevalence of tet genes: a culture-based method involving standard PCR and a method relying on quantitative PCR. The studied site was the Łyna River in Olsztyn (Poland). The culture-dependent method revealed that the concentrations of doxycycline-resistant bacteria harboring the tet(B) gene were higher in wastewater and downstream river samples than in upstream water samples. The tet(B) gene was transferred from environmental bacteria to Escherichia coli. The results generated by the culture-independent method validated statistically significant differences in tet(B) concentrations between upstream and downstream river sections, and revealed that tet(B) levels were correlated with the presence of other tetracycline resistance genes, dissolved oxygen concentrations, temperature and doxycycline concentrations in water. Our findings indicate that doxycycline-resistant bacteria, in particular E. coli harboring tet(B) or increased concentrations of tet(B), are potentially robust indicators of changes in water environments.201525461073
341620.9998Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. Antibiotic application in plant agriculture is primarily used to control fire blight caused by Erwinia amylovora in pome fruit orchards. In order to facilitate environmental impact assessment for antibiotic applications, we developed and validated culture-independent quantitative real-time PCR multiplex assays for streptomycin (strA, strB, aadA and insertion sequence IS1133) and tetracycline (tetB, tetM and tetW) resistance elements in plant and soil samples. The qPCR were reproducible and consistent whether the DNA was extracted directly from bacteria, plant and soil samples inoculated with bacteria or soil samples prior to and after manure slurry treatment. The genes most frequently identified in soils pre- and post-slurry treatment were strB, aadA, tetB and tetM. All genes tested were detected in soils pre-slurry treatment, and a decrease in relative concentrations of tetB and the streptomycin resistance genes was observed in samples taken post-slurry treatment. These multiplex qPCR assays offer a cost-effective, reliable method for simultaneous quantification of antibiotic resistance genes in complex, environmental sample matrices.201121549164
368230.9997Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.201627789876
312540.9997Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria. The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. RESULT: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry.200414664871
528950.9997Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.201627065407
529260.9997Antibiotic-Resistant Bacteria in Hydroponic Lettuce in Retail: A Comparative Survey. Hydroponic produce is gaining popularity due to its suitability for urban agriculture. The general public also considers that hydroponic produce is free from microbiological contamination. In this study, we compared the frequency and abundance of tetracycline-resistant and sulphadiazine-resistant bacteria and the minimal inhibitory concentration (MIC) of these isolates in conventional, organic, and hydroponic lettuce sold in retail. We also determined the frequency of samples carrying tetB, tetX, sul1, sul2, and int1 genes by PCR and further quantified the copy number of tetX, sul1, and int1 genes in samples positive for these genes using qPCR. As expected, the number of resistant bacteria and the MICs of these isolates were lowest in hydroponic lettuce and highest in organic lettuce. All tested resistant genes, except int1, were detected in samples of all three production methods, but no significant difference was observed between the three groups in the frequency of samples carrying the resistance genes examined or in their copy number. To the best of our knowledge, it is the first study directly reporting the existence of antibiotic-resistant bacteria and resistance genes in hydroponic vegetables sold in retail. The result highlights that the risk of antibiotic-resistant bacteria contamination in hydroponic produce should be further investigated.202032967196
342370.9997bla(TEM) and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. Four indicator genes were monitored by quantitative PCR in hospital effluent (HE) and in the raw and treated wastewater of the municipal wastewater treatment plant receiving the hospital discharge. The indicator genes were the class 1 integrase gene intI1, to assess the capacity of bacteria to be involved in horizontal gene transfer processes; bla(TEM), one of the most widespread antibiotic resistance genes in the environment, associated with Enterobacteriaceae; vanA, an antibiotic resistance gene uncommon in the environment and frequent in clinical isolates; and marA, part of a locus related to the stress response in Enterobacteriaceae. Variation in the abundance of these genes was analysed as a function of the type of water, and possible correlations with cultivable bacteria, antimicrobial residue concentrations, and bacterial community composition and structure were analysed. HE was confirmed as an important source of bla(TEM) and vanA genes, and wastewater treatment showed a limited capacity to remove these resistance genes. The genes bla(TEM) and vanA presented the strongest correlations with culturable bacteria, antimicrobial residues and some bacterial populations, representing interesting candidates as indicator genes to monitor resistance in environmental samples. The intI1 gene was the most abundant in all samples, demonstrating that wastewater bacterial populations hold a high potential for gene acquisition.201427873693
369680.9997Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Children are very vulnerable to bacterial infections and they are sometimes subject to antimicrobials for healing. The presence of resistance genes may counteract effects of antimicrobials. This work has thereby compared the amount of tetracycline resistance genes, tet(A) and tet(B), between conventional and organic meat-based or vegetable-based baby foods and used the quantification of these genes to assess the presence of tetracycline residues in these samples. Counts of bacteria harboring the tet(A) gene were higher than those containing tet(B), and there was no difference between the organic and the conventional samples. Samples with detectable amounts of tetracycline residues were also positive for the presence of tet genes, and when the presence of the genes was not detected, the samples were also negative for the presence of residues. The percentages of tetracycline residues were higher in organic samples than in conventional ones. It cannot be concluded that organic formulas are safer than conventional ones for the studied parameters.201528231206
338290.9997Patterns and persistence of antibiotic resistance in faecal indicator bacteria from freshwater recreational beaches. AIMS: This study was conducted to determine antibiotic susceptibility patterns among the faecal indicator bacteria (FIB), Escherichia coli and enterococci, and to determine the potential for freshwater beaches to serve as reservoirs of resistance genes where transfer of resistant phenotypes takes place or de novo resistance may evolve. METHODS AND RESULTS: One hundred and forty-seven E. coli and 150 enterococci collected from sand and water at recreational beaches along Lake Huron, Michigan, USA were screened against commonly used antibiotics. Resistance was apparent in both E. coli (19% resistant) and enterococci (65% resistant). Antibiotic-resistant E. coli were capable of growing in beach sand microcosms and were able to transfer a plasmid-encoded kanamycin-resistance gene in sand microcosms. Furthermore, resistant phenotypes were stable in the sand environment even in the absence of the corresponding antibiotic. CONCLUSIONS: Antibiotic-resistant FIB were prevalent and persistent in the beach habitat. SIGNIFICANCE AND IMPACT OF THE STUDY: Active populations of FIB at beaches express antibiotic resistance phenotypes and have the ability to transfer antibiotic resistance. These human-associated bacteria may be intermediaries in the movement of resistance between environmental and clinical reservoirs.201424698413
3431100.9997Correlation between Bacterial Cell Density and Abundance of Antibiotic Resistance on Milking Machine Surfaces Assessed by Cultivation and Direct qPCR Methods. The relative abundance of antibiotic-resistant bacteria and antibiotic-resistance genes was surveyed for different parts of a milking machine. A cultivation approach based on swab samples showed a highly diverse microbiota, harboring resistances against cloxacillin, ampicillin, penicillin, and tetracycline. This approach demonstrated a substantial cloxacillin resistance of numerous taxa within milking machine microbiota coming along with regular use of cloxacillin for dry-off therapy of dairy cows. For the less abundant tetracycline-resistant bacteria we found a positive correlation between microbial cell density and relative abundance of tetracycline-resistant microorganisms (R(2) = 0.73). This indicated an accelerated dispersion of resistant cells for sampling locations with high cell density. However, the direct quantification of the tetM gene from the swap samples by qPCR showed the reverse relation to bacterial density if normalized against the abundance of 16S rRNA genes (R(2) = 0.88). The abundance of 16S rRNA genes was analyzed by qPCR combined with a propidium monoazide treatment, which eliminates 16S rRNA gene signals in negative controls.202337166501
7104110.9997Antibiotic resistance genes load in an antibiotic free organic broiler farm. Antibiotic resistance is a serious concern for public health. Farm environments are relevant reservoirs of antibiotic resistant bacteria and antibiotic resistance genes (ARGs), thus strategies to limit the spread of ARGs from farms to the environment are needed. In this study a broiler farm, where antibiotics have never been used for any purpose, was selected to evaluate if this measure is effective in reducing the ARGs load in farm environment (FE) and in meat processing environment (MPE). Faecal samples from FE and MPE were processed for DNA extraction. Detection and quantification of the 16S rRNA gene and selected ARGs (bla(TEM), qnrS, sul2, and tetA) were carried out by PCR and digital droplet PCR (ddPCR), respectively. Generally, the relative abundance of the quantified ARGs in FE was similar or higher than that measured in intensive farms. Furthermore, apart for tetA, no differences in relative abundances of the other ARGs between FE and MPE were determined. These results suggest that the choice to not use antibiotics in broiler farming is not so effective to limit the ARGs spread in MPE and that further sources of ARGs should be considered including the preceding production phase with particular reference to the breeding stage.202235091251
2796120.9997Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps.200717298370
3143130.9997Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure. The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure.201626616601
5350140.9997Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. BACKGROUND: Point sources such as wastewater treatment plants (WWTPs) commonly discharge their effluent into rivers. Their waste may include antibiotic residues, disinfectants, antibiotic resistant bacteria (ARB), and Antimicrobial Resistance Genes (ARG). There is evidence that ARG can be found in the natural environment, but attribution to specific point sources is lacking. OBJECTIVES: The goal of this study was to assess the release and dissemination of ARG from three WWTPs in southern Chile via two pathways: through the river systems, and through wild birds. METHODS: A longitudinal study was conducted, collecting river sediment samples at different distances both upstream and downstream from each WWTP. Wild birds were sampled from around one of the WWTPs once a month for 13 months. A microfluidic q-PCR approach was used to quantify 48 genes covering different molecular mechanisms of resistance, and data was analyzed using ordination methods and linear mixed regression models. RESULTS: There was a statistically significant increase downstream from the WWTPs (p < 0.05) for 17 ARG, but the downstream dissemination through the rivers was not clear. Beta-lactamase genes bla(KPC), bla(TEM), and bla(SHV) were the most abundant in birds, with higher abundance of bla(SHV) in migratory species compared to resident species (p < 0.05). The gene profile was more similar between the migratory and resident bird groups compared to the WWTP gene profile. CONCLUSIONS: While results from this study indicate an influence of WWTPs on ARG abundance in the rivers, the biological significance of this increase and the extent of the WWTPs influence are unclear. In addition, wild birds were found to play a role in disseminating ARG, although association to the specific WWTP could not be ascertained.202031722832
3131150.9997Integron-containing bacteria in faeces of cattle from different production systems at slaughter. AIMS: To determine the prevalence and characteristics of integron-containing bacteria in faeces of cattle from grass-fed, lot-fed, or organically produced cattle. METHODS AND RESULTS: Faecal samples from grass-fed (n = 125), lot-fed (n = 125) and organic (n = 135) cattle were tested for the presence of class 1 and class 2 integrons by using PCR and colony hybridisation. The prevalence of class 1 and class 2 integrase were higher in lot-fed cattle (71% and 62%) than grass-fed cattle (52% and 30%) which in turn were higher than organic cattle (25% and 11%). Isolation rates of integron-containing bacteria were reflective of PCR prevalence results. CONCLUSIONS: The antimicrobial resistance genes harboured by the integrons differed little across the three systems and were typically to antimicrobials that would rarely be used therapeutically or for growth promotion purposes. The differences in prevalence observed between the systems may be a function of the intensiveness of each system. SIGNIFICANCE AND IMPACT OF THE STUDY: Integron-containing bacteria may be present in all cattle production systems regardless of the amount of antimicrobial use and confirms that the prudent use of antimicrobials is required so that the development of integrons harbouring genes significant to human medicine is avoided.200919302491
5325160.9997Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year. Tetracycline-resistant bacteria and genes encoding tetracycline resistance are common in anthropogenic environments. We studied how wastewater treatment affects the prevalence and concentration of two genes, tetA and tetB, that encode resistance to tetracycline. Using real-time polymerase chain reaction (PCR) we analysed wastewater samples collected monthly for one year at eight key-sites in a full-scale municipal wastewater treatment plant (WWTP). We detected tetA and tetB at each sampling site and the concentration of both genes, expressed per wastewater volume or per total-DNA, decreased over the treatment process. The reduction of tetA and tetB was partly the result of the sedimentation process. The ratio of tetA and tetB, respectively, to total DNA was lower in or after the biological processes. Taken together our data show that tetracycline resistance genes occur throughout the WWTP, and that the concentrations are reduced under conventional operational strategies.201020154388
5293170.9997Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.202133804606
3676180.9997Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 10(3) to 10(5) orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock.201829469609
3681190.9997A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827