# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3378 | 0 | 1.0000 | Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Wastewater from hospitals should be monitored precisely and treated properly before discharge and reuse to avoid epidemic and pandemic complications, as it contains hazardous pollutants for the ecosystem. Antibiotic residues in treated hospital wastewater effluents constitute a major environmental concern since they resist various wastewater treatment processes. The emergence and spread of multi-drug-resistant bacteria, that cause public health problems, are therefore always a major concern. The aims and objectives of this study were mainly to characterize the chemical and microbial properties of the hospital effluent of wastewater treatment plant (WWTP) before discharge to the environment. Special attention was paid to the presence of multiple resistant bacteria and the effects of hospital effluent reuse in irrigation on zucchini as an economically important plant. The risk of cell-free DNA carrying antibiotic resistance genes contained in the hospital effluent as a long-lasting hazard had been discussed. In this study, 21 bacterial strains were isolated from the effluent of a hospital WWTP. Isolated bacteria were evaluated for multi-drug resistance ability against 5 antibiotics (Tetracycline, Ampicillin, Amoxicillin, Chloramphenicol, and Erythromycin) at a concentration of 25 ppm. Out of them, three isolates (AH-03, AH-07, and AH-13) were selected because they recorded the highest growth in presence of tested antibiotics. Selected isolates were identified using 16S rRNA gene sequence homology as Staphylococcus haemolyticus (AH-03), Enterococcus faecalis (AH-07), and Escherichia coli (AH-13). Their susceptibility to ascending concentrations of tested antibiotics indicated that they were all susceptible at a concentration above 50 ppm. Results of the greenhouse experiment regarding the effect of hospital WWTP effluent reuse on zucchini plant fresh weights compared to that irrigated with fresh water indicated that the former recorded a limited increase in total fresh weights (6.2 g and 5.3 g/plant, respectively). Our results demonstrated the low impact of the reuse of Hospital WWTP effluent in agriculture irrigation compared to its greater risk in transferring multiple antibiotic bacteria and antibiotic resistance genes to soil bacteria through natural transformation. | 2023 | 37143530 |
| 5293 | 1 | 0.9999 | Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS. | 2021 | 33804606 |
| 3379 | 2 | 0.9999 | Comprehensive Study of Antibiotic Resistance in Enterococcus spp.: Comparison of Influents and Effluents of Wastewater Treatment Plants. Background/Objectives: The spread of antibiotic resistance, particularly through Enterococcus spp., in wastewater treatment plants (WWTPs) poses significant public health risks. Given that research on antibiotic-resistant enterococci and their antibiotic-resistance genes in aquatic environments is limited, we evaluated the role of Enterococcus spp. in WWTPs by comparing the antibiotic resistance rates, gene prevalence, biofilm formation, and residual antibiotics in the influent and effluent using culture-based methods. Methods: In 2022, influent and effluent samples were collected from 11 WWTPs in South Korea. Overall, 804 Enterococcus strains were isolated, and their resistance to 16 antibiotics was assessed using the microdilution method. Results: High resistance to tetracycline, ciprofloxacin, kanamycin, and erythromycin was observed. However, no significant differences in the overall resistance rates and biofilm formation were observed between the influent and effluent. Rates of resistance to ampicillin, ciprofloxacin, and gentamicin, as well as the prevalence of the tetM and qnrS genes, increased in the effluent, whereas resistance rates to chloramphenicol, florfenicol, erythromycin, and tylosin tartrate, along with the prevalence of the optrA gene, decreased. E. faecium, E. hirae, and E. faecalis were the dominant species, with E. faecalis exhibiting the highest resistance. Conclusions: Our results suggest that WWTPs do not effectively reduce the rates of resistant Enterococcus spp., indicating the need for continuous monitoring and improvement of the treatment process to mitigate the environmental release of antibiotic-resistant bacteria. | 2024 | 39596765 |
| 5326 | 3 | 0.9998 | The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla (SHV-1), bla (TEM-1), msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC(90) values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance. | 2024 | 39816252 |
| 3284 | 4 | 0.9998 | Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse. | 2024 | 38378066 |
| 3427 | 5 | 0.9998 | Annual changes in the occurrence of antibiotic-resistant coliform bacteria and enterococci in municipal wastewater. Wastewater contains subinhibitory concentrations of different micropollutants such as antibiotics that create selective pressure on bacteria. This phenomenon is also caused by insufficient wastewater treatment technology leading to the development and spread of antibiotic-resistant bacteria and resistance genes into the environment. Therefore, this work focused on monitoring of antibiotic-resistant coliform bacteria and enterococci in influent and effluent wastewaters taken from the second biggest wastewater treatment plant (Petržalka) in the capital of Slovakia during 1 year. Antibiotic-resistant strains were isolated, identified, and characterized in terms of susceptibility and biofilm production. All of 27 antibiotic-resistant isolates were identified mainly as Morganella morganii, Citrobacter spp., and E. coli. Multidrug-resistance was detected in 58% of isolated strains. All tested isolates could form biofilm; two strains were very strong producers, and 74% formed biofilm by strong intensity. The flow rate of the influent wastewater had a more significant impact on the number of studied bacteria than the temperature. Graphical abstract. | 2019 | 31049859 |
| 5336 | 6 | 0.9998 | Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment. | 2022 | 35207435 |
| 3421 | 7 | 0.9998 | Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. | 2018 | 29898509 |
| 3426 | 8 | 0.9998 | Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. Abstract In view of the increasing interest in the possible role played by hospital and municipal wastewater systems in the selection of antibiotic-resistant bacteria, biofilms were investigated using enterococci, staphylococci, Enterobacteriaceae, and heterotrophic bacteria as indicator organisms. In addition to wastewater, biofilms were also investigated in drinking water from river bank filtrate to estimate the occurrence of resistant bacteria and their resistance genes, thus indicating possible transfer from wastewater and surface water to the drinking water distribution network. Vancomycin-resistant enterococci were characterized by antibiograms, and the vanA resistance gene was detected by molecular biology methods, including PCR. The vanA gene was found not only in wastewater biofilms but also in drinking water biofilms in the absence of enterococci, indicating possible gene transfer to autochthonous drinking water bacteria. The mecA gene encoding methicillin resistance in staphylococci was detected in hospital wastewater biofilms but not in any other compartment. Enterobacterial ampC resistance genes encoding beta-lactamase activities were amplified by PCR from wastewater, surface water and drinking water biofilms. | 2003 | 19719664 |
| 5316 | 9 | 0.9998 | Incidence of co-resistance to antibiotics and chlorine in bacterial biofilm of hospital water systems: Insights into the risk of nosocomial infections. The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with β-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the β-lactamase genes bla(CTX-M) and bla(TEM) were not identified in the ARB, suggesting the presence of other β-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The dominant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy. | 2023 | 37951730 |
| 5328 | 10 | 0.9998 | Treatment enhances the prevalence of antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater of Sri Lanka, and India. Wastewater treatment plants (WWTPs) are being debated for being the hot spots for the development of antibiotic resistance in pathogenic microbial communities. We observed the prevalence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARG), and multidrug resistance (MDR) in two municipal WWTPs and one hospital WWTP in Western and Southern Sri Lanka, and compared the results with particular reference to Indian and the World scenario to trace the imprints of treatment on ARB and ARG. Result suggests that although wastewater treatment resulted in higher than 1.06 log Escherichia coli (E. coli) reduction at all WWTPs, yet the percent of E. coli resistant to most of the antibiotics increased from influent to effluent. Higher prevalence of ARB, ARG, and MDR were noted in hospital WWTP owing to the higher antibiotic concentrations used and excreted by the patients. With reference to India, the WWTPs in Sri Lanka showed more ARB and a consistent increase in its percentages after the treatment but were less resistant to Fluoroquinolone (FQ). E. coli strains isolated from each location of both countries showed multidrug resistance, which has increased after the treatment and was strongly correlated with FQ in every WWTP. Resistant genes for Fluoroquinolone (FQ) (aac-(6')-1b-cr, qnrB, qnrS), β-lactams (ampC), and sulphonamides (sul1) were common in all the wastewaters except additional parC gene in the hospital effluent of Sri Lanka, implying much higher resistance for quinolones, especially for Ciprofloxacin. Multivariate statistical treatments suggest that effluent showed higher loadings and association for MDR/ARB, where pH change and more extensive interaction with metals during the treatment processes seem to have profound effects. | 2020 | 32006770 |
| 5307 | 11 | 0.9998 | Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater. | 2021 | 34108949 |
| 3423 | 12 | 0.9998 | bla(TEM) and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. Four indicator genes were monitored by quantitative PCR in hospital effluent (HE) and in the raw and treated wastewater of the municipal wastewater treatment plant receiving the hospital discharge. The indicator genes were the class 1 integrase gene intI1, to assess the capacity of bacteria to be involved in horizontal gene transfer processes; bla(TEM), one of the most widespread antibiotic resistance genes in the environment, associated with Enterobacteriaceae; vanA, an antibiotic resistance gene uncommon in the environment and frequent in clinical isolates; and marA, part of a locus related to the stress response in Enterobacteriaceae. Variation in the abundance of these genes was analysed as a function of the type of water, and possible correlations with cultivable bacteria, antimicrobial residue concentrations, and bacterial community composition and structure were analysed. HE was confirmed as an important source of bla(TEM) and vanA genes, and wastewater treatment showed a limited capacity to remove these resistance genes. The genes bla(TEM) and vanA presented the strongest correlations with culturable bacteria, antimicrobial residues and some bacterial populations, representing interesting candidates as indicator genes to monitor resistance in environmental samples. The intI1 gene was the most abundant in all samples, demonstrating that wastewater bacterial populations hold a high potential for gene acquisition. | 2014 | 27873693 |
| 5289 | 13 | 0.9998 | Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems. | 2016 | 27065407 |
| 5292 | 14 | 0.9998 | Antibiotic-Resistant Bacteria in Hydroponic Lettuce in Retail: A Comparative Survey. Hydroponic produce is gaining popularity due to its suitability for urban agriculture. The general public also considers that hydroponic produce is free from microbiological contamination. In this study, we compared the frequency and abundance of tetracycline-resistant and sulphadiazine-resistant bacteria and the minimal inhibitory concentration (MIC) of these isolates in conventional, organic, and hydroponic lettuce sold in retail. We also determined the frequency of samples carrying tetB, tetX, sul1, sul2, and int1 genes by PCR and further quantified the copy number of tetX, sul1, and int1 genes in samples positive for these genes using qPCR. As expected, the number of resistant bacteria and the MICs of these isolates were lowest in hydroponic lettuce and highest in organic lettuce. All tested resistant genes, except int1, were detected in samples of all three production methods, but no significant difference was observed between the three groups in the frequency of samples carrying the resistance genes examined or in their copy number. To the best of our knowledge, it is the first study directly reporting the existence of antibiotic-resistant bacteria and resistance genes in hydroponic vegetables sold in retail. The result highlights that the risk of antibiotic-resistant bacteria contamination in hydroponic produce should be further investigated. | 2020 | 32967196 |
| 3425 | 15 | 0.9998 | Horizontal transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process. Transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and easy access of these bacteria to the community are major environmental and public health concern. The aim of this study was to determine transfer of the antimicrobial resistance genes from resistant to susceptible gram negative bacteria in the sewage and lake water by conjugation process and to determine the influence of some physico-chemical parameters of sewage and lake water on the transfer of these resistance genes. For this reason, we isolated 20 liter of each sewage and lake water from coconut area within university campus and Lingambudi lake respectively in Mysore city, India, during monsoon season and studied different physical parameters of the water samples like pH, temperature, conductivity turbidity and color as well as chemical parameters like BOD, COD, field DO and total chloride ion. The gram negative bacteria were isolated and identified from the above water samples using microbiological and biochemical methods and their sensitivity to different antibiotics was determined by disc diffusion break point assay. Conjugation between two multiple antibiotic resistant isolates Pseudomonas aeuginosa and E. coli as donor and E. coli Rif(r) (sensitive to antibiotics) as recipient were carried out in 5ml sterile sewage and lake water. All isolates were resistant to Am, moderately resistant to Te and E, while majority were sensitive to Cip, Gm and CAZ antibiotics. Horizontal transfer of antibiotic resistance genes by conjugation process revealed transfer of Gm, Te and E resistant genes from Ps. aeruginosa to E. coli Rif(r) recipient with mean frequency of +/- 2.3 x 10(-4) in sewage and +/- 2.6 x 10(-6) in lake water respectively Frequency of conjugation in sewage was two fold more as compared to lake water (p< or =0.05). Co- transfer study revealed simultaneous transfer of above resistant markers together to the recipient cells. As the above results indicate, due to selective pressure in sewage (presence of antibiotics), the isolates from sewage were more resistant to different antibiotics as compared to those from lake water. Furthermore, these resistance genes can transfer to sensitive bacteria by conjugation. Physico-chemical parameters of water may play role in this process. | 2009 | 20112862 |
| 3372 | 16 | 0.9998 | Antibiotic and Disinfectant Resistance in Tap Water Strains - Insight into the Resistance of Environmental Bacteria. Although antibiotic-resistant bacteria (ARB) have been isolated from tap water worldwide, the knowledge of their resistance patterns is still scarce. Both horizontal and vertical gene transfer has been suggested to contribute to the resistance spread among tap water bacteria. In this study, ARB were isolated from finished water collected at two independent water treatment plants (WTPs) and tap water collected at several point-of-use taps during summer and winter sampling campaigns. A total of 24 strains were identified to genus or species level and subjected to antibiotic and disinfectant susceptibility testing. The investigated tap water ARB belonged to phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. The majority of the isolates proved multidrug resistant and resistant to chemical disinfectant. Neither seasonal nor WTP-dependent variabilities in antibiotic or disinfectant resistance were found. Antibiotics most effective against the investigated isolates included imipenem, tetracyclines, erythromycin, and least effective - aztreonam, cefotaxime, amoxicillin, and ceftazidime. The most resistant strains originate from Afipia sp. and Methylobacterium sp. Comparing resistance patterns of isolated tap water ARB with literature reports concerning the same genera or species confirms intra-genus or even intra-specific variabilities of environmental bacteria. Neither species-specific nor acquired resistance can be excluded. | 2021 | 33815527 |
| 3286 | 17 | 0.9998 | Impact of Vegetative Treatment Systems on Multiple Measures of Antibiotic Resistance in Agricultural Wastewater. Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates (n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates (n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters. | 2018 | 29933547 |
| 1942 | 18 | 0.9998 | Occurrence of antibiotic resistance among Gram negative bacteria isolated from effluents of fish processing plants in and around Mangalore. The presence of antibiotic-resistant bacteria in seafood not only poses a serious health risk for the consumers but also contributes to the spread of these antibiotic-resistant bacteria in the natural environments through the effluents discharged from the fish processing plants. The aims of this study were to isolate Gram-negative bacteria from the effluents of fish processing plants in and around Mangalore, India and to profile their antibiotic resistance pattern. Maximum resistance was seen for ampicillin (40.78%) followed by tetracycline (40.22%) and nitrofurantoin (29.05%). Further, the detection of genes that contribute to antibiotic resistance revealed the presence of sulfonamide resistance genes (sul1 and sul2) and extended spectrum β-lactamase genes (bla (CTX-M), bla (TEM)) in a few isolates. The presence of such bacteria in fish processing effluents is a matter of great concern because they can contribute significantly to the antibiotic resistance in the natural environment. It is imperative that seafood processing plants follow the safe disposal of effluents in order to reduce or eliminate the antibiotic resistance menace. | 2020 | 31112036 |
| 5329 | 19 | 0.9998 | Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources. | 2023 | 37998788 |