Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
337701.0000Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. The interaction of the environment with the effluent of wastewater treatment plants, having antibiotics, multidrug-resistant (MDR) bacteria, and biofilm-forming genes (BFGs), has vast environmental risks. Antibiotic pollution bottlenecks environmental bacteria and has the potential to significantly lower the biodiversity of environmental bacteria, causing an alteration in ecological equilibrium. It can induce selective pressure for antibiotic resistance (AR) and can transform the non-resistant environmental bacteria into a resistant form through HGT. This study investigated the occurrence of MDR bacteria, showing phenotypic and genotypic characteristics of biofilm. The bacteria were isolated from the pharmaceutical wastewater treatment plants (WWTPs) of Dehradun and Haridwar (India), located in the pharmaceutical areas. The findings of this study demonstrate the coexistence of BFGs and MDR clinical bacteria in the vicinity of pharmaceutical industrial wastewater treatment plants. A total of 47 bacteria were isolated from both WWTPs and tested for antibiotic resistance to 13 different antibiotics; 16 isolates (34.04 %) tested positive for MDR. 5 (31.25 %) of these 16 MDR isolates were producing biofilm and identified as Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Burkholderia cepacia. The targeted BFGs in this study were ompA, bap and pslA. The most common co-occurring gene was ompA (80 %), with pslA (40 %) being the least common. A. baumannii contains all three targeted genes, whereas B. cepacia only has bap. Except for B. cepacia, all the biofilm-forming MDR isolates show AR to all the tested antibiotics and prove that the biofilm enhances the AR potential. The samples of both wastewater treatment plants also showed the occurrence of tetracycline, ampicillin, erythromycin and chloramphenicol, along with high levels of BOD, COD, PO(4)(-3), NO(3)(-), heavy metals and organic pollutants. The co-occurrence of MDR and biofilm-forming tendency in the clinical strain of bacteria and its environmental dissemination may have an array of hazardous impacts on human and environmental health.202439002428
531310.9998Treated wastewater: A hotspot for multidrug- and colistin-resistant Klebsiella pneumoniae. Wastewater treatment plants are hotspots for the release of antimicrobial resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy. In this study, we collected wastewater samples from the inlet, sedimentation tank, and effluent water of a wastewater treatment plant in June, July, October, and November of 2018. We detected and characterized 42 K. pneumoniae strains using whole genome sequencing (15 from the inlet, 8 from the sedimentation tank, and 19 from the effluent). Additionally, the strains were tested for their antimicrobial resistance phenotype. Using whole genome sequencing no distinct patterns were observed in terms of their genetic profiles. All strains were resistant to tetracycline, meanwhile 60%, 47%, and 37.5% of strains isolated from the inlet, sedimentation tank, and effluent, respectively, were multidrug resistant. Some of the multidrug resistant isolates were also resistant to colistin, and nearly all tested positive for the eptB and arnT genes, which are associated with polymyxin resistance. Various antimicrobial resistance genes were linked to mobile genetic elements, and they did not correlate with detected virulence groups or defense systems. Overall, our results, although not quantitative, highlight that multidrug resistant K. pneumoniae strains, including those resistant to colistin and genetically unrelated, being discharged into aquatic ecosystems from wastewater treatment plants. This suggests the necessity of monitoring aimed at genetically characterizing these pathogenic bacteria.202439053799
337920.9998Comprehensive Study of Antibiotic Resistance in Enterococcus spp.: Comparison of Influents and Effluents of Wastewater Treatment Plants. Background/Objectives: The spread of antibiotic resistance, particularly through Enterococcus spp., in wastewater treatment plants (WWTPs) poses significant public health risks. Given that research on antibiotic-resistant enterococci and their antibiotic-resistance genes in aquatic environments is limited, we evaluated the role of Enterococcus spp. in WWTPs by comparing the antibiotic resistance rates, gene prevalence, biofilm formation, and residual antibiotics in the influent and effluent using culture-based methods. Methods: In 2022, influent and effluent samples were collected from 11 WWTPs in South Korea. Overall, 804 Enterococcus strains were isolated, and their resistance to 16 antibiotics was assessed using the microdilution method. Results: High resistance to tetracycline, ciprofloxacin, kanamycin, and erythromycin was observed. However, no significant differences in the overall resistance rates and biofilm formation were observed between the influent and effluent. Rates of resistance to ampicillin, ciprofloxacin, and gentamicin, as well as the prevalence of the tetM and qnrS genes, increased in the effluent, whereas resistance rates to chloramphenicol, florfenicol, erythromycin, and tylosin tartrate, along with the prevalence of the optrA gene, decreased. E. faecium, E. hirae, and E. faecalis were the dominant species, with E. faecalis exhibiting the highest resistance. Conclusions: Our results suggest that WWTPs do not effectively reduce the rates of resistant Enterococcus spp., indicating the need for continuous monitoring and improvement of the treatment process to mitigate the environmental release of antibiotic-resistant bacteria.202439596765
256830.9998Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Contamination of surface waters in underdeveloped countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks which may represent a significant dissemination mechanism of antibiotic resistance genes among pathogenic bacterial populations. The present study aims to determine the multi-drug resistance patterns among isolated and identified bacterial strains in a pharmaceutical wastewater effluent in north Tunisia. Fourteen isolates were obtained and seven of them were identified. These isolates belong to different genera namely, Pseudomonas, Acinetobacter, Exiguobacterium, Delftia and Morganella. Susceptibility patterns of these isolates were studied toward commonly used antibiotics in Tunisia. All the identified isolates were found to have 100% susceptibility against colistin sulfate and 100% resistance against amoxicillin. Among the 11 antibiotics tested, six patterns of multi-drug resistance were obtained. The potential of the examined wastewater effluent in spreading multi-drug resistance and the associated public health implications are discussed.201526343496
342740.9998Annual changes in the occurrence of antibiotic-resistant coliform bacteria and enterococci in municipal wastewater. Wastewater contains subinhibitory concentrations of different micropollutants such as antibiotics that create selective pressure on bacteria. This phenomenon is also caused by insufficient wastewater treatment technology leading to the development and spread of antibiotic-resistant bacteria and resistance genes into the environment. Therefore, this work focused on monitoring of antibiotic-resistant coliform bacteria and enterococci in influent and effluent wastewaters taken from the second biggest wastewater treatment plant (Petržalka) in the capital of Slovakia during 1 year. Antibiotic-resistant strains were isolated, identified, and characterized in terms of susceptibility and biofilm production. All of 27 antibiotic-resistant isolates were identified mainly as Morganella morganii, Citrobacter spp., and E. coli. Multidrug-resistance was detected in 58% of isolated strains. All tested isolates could form biofilm; two strains were very strong producers, and 74% formed biofilm by strong intensity. The flow rate of the influent wastewater had a more significant impact on the number of studied bacteria than the temperature. Graphical abstract.201931049859
531650.9998Incidence of co-resistance to antibiotics and chlorine in bacterial biofilm of hospital water systems: Insights into the risk of nosocomial infections. The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with β-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the β-lactamase genes bla(CTX-M) and bla(TEM) were not identified in the ARB, suggesting the presence of other β-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The domi‌‌nant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy.202337951730
194260.9998Occurrence of antibiotic resistance among Gram negative bacteria isolated from effluents of fish processing plants in and around Mangalore. The presence of antibiotic-resistant bacteria in seafood not only poses a serious health risk for the consumers but also contributes to the spread of these antibiotic-resistant bacteria in the natural environments through the effluents discharged from the fish processing plants. The aims of this study were to isolate Gram-negative bacteria from the effluents of fish processing plants in and around Mangalore, India and to profile their antibiotic resistance pattern. Maximum resistance was seen for ampicillin (40.78%) followed by tetracycline (40.22%) and nitrofurantoin (29.05%). Further, the detection of genes that contribute to antibiotic resistance revealed the presence of sulfonamide resistance genes (sul1 and sul2) and extended spectrum β-lactamase genes (bla (CTX-M), bla (TEM)) in a few isolates. The presence of such bacteria in fish processing effluents is a matter of great concern because they can contribute significantly to the antibiotic resistance in the natural environment. It is imperative that seafood processing plants follow the safe disposal of effluents in order to reduce or eliminate the antibiotic resistance menace.202031112036
337270.9997Antibiotic and Disinfectant Resistance in Tap Water Strains - Insight into the Resistance of Environmental Bacteria. Although antibiotic-resistant bacteria (ARB) have been isolated from tap water worldwide, the knowledge of their resistance patterns is still scarce. Both horizontal and vertical gene transfer has been suggested to contribute to the resistance spread among tap water bacteria. In this study, ARB were isolated from finished water collected at two independent water treatment plants (WTPs) and tap water collected at several point-of-use taps during summer and winter sampling campaigns. A total of 24 strains were identified to genus or species level and subjected to antibiotic and disinfectant susceptibility testing. The investigated tap water ARB belonged to phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. The majority of the isolates proved multidrug resistant and resistant to chemical disinfectant. Neither seasonal nor WTP-dependent variabilities in antibiotic or disinfectant resistance were found. Antibiotics most effective against the investigated isolates included imipenem, tetracyclines, erythromycin, and least effective - aztreonam, cefotaxime, amoxicillin, and ceftazidime. The most resistant strains originate from Afipia sp. and Methylobacterium sp. Comparing resistance patterns of isolated tap water ARB with literature reports concerning the same genera or species confirms intra-genus or even intra-specific variabilities of environmental bacteria. Neither species-specific nor acquired resistance can be excluded.202133815527
337680.9997Biocide resistant and antibiotic cross-resistant potential pathogens from sewage and river water from a wastewater treatment facility in the North-West, Potchefstroom, South Africa. Exposure to antibiotics, biocides, chemical preservatives, and heavy metals in different settings such as wastewater treatment plants (WWTPs) may apply selective pressure resulting in the enrichment of multiple resistant, co- and cross-resistant strains of bacteria. The purpose of this study was to identify and characterize potentially pathogenic triclosan (TCS) - and/or, chloroxylenol (PCMX) tolerant bacteria from sewage and river water in the North-West, Potchefstroom, South Africa. Several potential pathogens were identified, with Aeromonas isolates being most abundant. Clonal relationships between Aeromonas isolates found at various sampling points were elucidated using ERIC-PCR. Selected isolates were characterized for their minimum inhibitory concentrations against the biocides, as well as antibiotic resistance profiles, followed by an evaluation of synergistic and antagonistic interactions between various antimicrobials. Isolates were also screened for the presence of extracellular enzymes associated with virulence. High-performance liquid chromatography revealed the presence of both biocides in the wastewater, but fingerprinting methods did not reveal whether the WWTP is the source from which these organisms enter the environment. Isolates exhibited various levels of resistance to antimicrobials as well as several occurrences of synergy and antagonisms between the biocides and select antibiotics. Several isolates had a very high potential for virulence but further study is required to identify the specific virulence and resistance genes associated with the isolates in question.201931596266
342590.9997Horizontal transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process. Transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and easy access of these bacteria to the community are major environmental and public health concern. The aim of this study was to determine transfer of the antimicrobial resistance genes from resistant to susceptible gram negative bacteria in the sewage and lake water by conjugation process and to determine the influence of some physico-chemical parameters of sewage and lake water on the transfer of these resistance genes. For this reason, we isolated 20 liter of each sewage and lake water from coconut area within university campus and Lingambudi lake respectively in Mysore city, India, during monsoon season and studied different physical parameters of the water samples like pH, temperature, conductivity turbidity and color as well as chemical parameters like BOD, COD, field DO and total chloride ion. The gram negative bacteria were isolated and identified from the above water samples using microbiological and biochemical methods and their sensitivity to different antibiotics was determined by disc diffusion break point assay. Conjugation between two multiple antibiotic resistant isolates Pseudomonas aeuginosa and E. coli as donor and E. coli Rif(r) (sensitive to antibiotics) as recipient were carried out in 5ml sterile sewage and lake water. All isolates were resistant to Am, moderately resistant to Te and E, while majority were sensitive to Cip, Gm and CAZ antibiotics. Horizontal transfer of antibiotic resistance genes by conjugation process revealed transfer of Gm, Te and E resistant genes from Ps. aeruginosa to E. coli Rif(r) recipient with mean frequency of +/- 2.3 x 10(-4) in sewage and +/- 2.6 x 10(-6) in lake water respectively Frequency of conjugation in sewage was two fold more as compared to lake water (p< or =0.05). Co- transfer study revealed simultaneous transfer of above resistant markers together to the recipient cells. As the above results indicate, due to selective pressure in sewage (presence of antibiotics), the isolates from sewage were more resistant to different antibiotics as compared to those from lake water. Furthermore, these resistance genes can transfer to sensitive bacteria by conjugation. Physico-chemical parameters of water may play role in this process.200920112862
5336100.9997Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment.202235207435
1943110.9997Occurrence and distribution of antibiotic-resistant bacteria and transfer of resistance genes in Lake Taihu. The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: bla(TEM) > bla(SHV) > bla(CTMX) and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption.201324240317
3374120.9997Characterization of Enterococcus species in surface drinking water from Akoko Edo Nigeria reveals contamination levels and risks to public health. This study focused on the assessment of drinking surface water for the presence and characteristics of Enterococcus species, which are indicative of water contamination and pose potential health risks to consumers. Our year-long investigation into several water bodies included using chromogenic medium and membrane filtering to isolate Enterococcus. The antimicrobial susceptibility of these bacteria was assessed through micro broth dilution, while virulence factors and biofilm formation were determined phenotypically. Resistance and virulence traits were detected using polymerase chain reaction (PCR) techniques. The study revealed varying bacterial densities measured in log10 CFU/100mL, with fecal coliforms, total coliforms, and Enterococcus species all present in the water, highlighting potential contamination issues. Enterococcus distribution showed a variety of species, with E. faecium being the most prevalent. Alarmingly, 63.9% of the isolates displayed multidrug resistance (MDR), and efflux pump genes associated with antimicrobial resistance were detected. The presence of virulence genes and genes associated with biofilm formation indicates the potential of these Enterococcus species to cause diseases and contribute to water quality problems. Given that this surface water serves as a drinking water source for local communities, the findings indicate a potential public health threat. The study provides crucial data for health professionals to conduct risk assessments, reducing the risk of health issues and enhancing consumer safety in relation to drinking water.202541173967
5671130.9997Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. BACKGROUND: The "One Health" concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance. METHODS: The purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles. RESULTS: The susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, while P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) against K. pneumoniae biofilms and with CIP (40% at 10 × MIC) against P. fluorescens biofilms. DISCUSSION: The results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence.201829910986
1941140.9997The association between antimicrobials and the antimicrobial-resistant phenotypes and resistance genes of Escherichia coli isolated from hospital wastewaters and adjacent surface waters in Sri Lanka. The presence of antimicrobials, antimicrobial-resistant bacteria (ARB), and the associated antimicrobial resistance genes (ARGs) in the environment is a global health concern. In this study, the concentrations of 25 antimicrobials, the resistance of Escherichia coli (E. coli) strains in response to the selection pressure imposed by 15 antimicrobials, and enrichment of 20 ARGs in E. coli isolated from hospital wastewaters and surface waters were investigated from 2016 to 2018. In hospital wastewaters, clarithromycin was detected at the highest concentration followed by sulfamethoxazole and sulfapyridine. Approximately 80% of the E. coli isolates were resistant, while 14% of the isolates exhibited intermediate resistance against the tested antimicrobial agents. Approximately 61% of the examined isolates were categorized as multidrug-resistant bacteria. The overall abundance of phenotypes that were resistant toward drugs was in the following order: β-lactams, tetracycline, quinolones, sulfamethoxazole/trimethoprim, aminoglycosides, and chloramphenicol. The data showed that the E. coli isolates frequently harbored bla(TEM), bla(CTX-M), tetA, qnrS, and sul2. These results indicated that personal care products were significantly associated with the presence of several resistant phenotypes and resistance genes, implying their role in co-association with multidrug resistance. Statistical analysis also indicated a disparity specific to the site, treatment, and year in the data describing the prevalence of ARB and ARGs and their release into downstream waters. This study provides novel insights into the abundance of antimicrobial, ARB and ARGs in Sri Lanka, and could further offer invaluable information that can be integrated into global antimicrobial resistance databases.202133894511
3370150.9997Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.201323247295
3371160.9997Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens.201728238372
2867170.9997Enzymatic Activity and Horizontal Gene Transfer of Heavy Metals and Antibiotic Resistant Proteus vulgaris from Hospital Wastewater: An Insight. Globally, the issue of microbial resistance to medicines and heavy metals is getting worse. There are few reports or data available for Proteus vulgaris (P. vulgaris), particularly in India. This investigation intends to reveal the bacteria's ability to transmit genes and their level of resistance as well. The wastewater samples were taken from several hospitals in Lucknow City, India, and examined for the presence of Gram-negative bacteria that were resistant to antibiotics and heavy metals. The microbial population count in different hospital wastewaters decreases with increasing concentrations of metal and antibiotics. Among all the examined metals, Ni and Zn had the highest viable counts, whereas Hg, Cd, and Co had the lowest viable counts. Penicillin, ampicillin, and amoxicillin, among the antibiotics, demonstrated higher viable counts, whereas tetracycline and erythromycin exhibited lower viable counts. The MIC values for the P. vulgaris isolates tested ranged from 50 to 16,00 μg/ml for each metal tested. The multiple metal resistance (MMR) index, which ranged from 0.04 to 0.50, showed diverse heavy metal resistance patterns in all P. vulgaris isolates (in the case of 2-7 metals in various combinations). All of the tested isolates had methicillin resistance, whereas the least number of isolates had ofloxacin, gentamycin, or neomycin resistance. The P. vulgaris isolates displayed multidrug resistance patterns (2-12 drugs) in various antibiotic combinations. The MAR indexes were shown to be between (0.02-0.7). From the total isolates, 98%, 84%, and 80% had urease, gelatinase, and amylase activity, whereas 68% and 56% displayed protease and beta-lactamase activity. Plasmids were present in all the selected resistant isolates and varied in size from 42.5 to 57.0 kb and molecular weight from 27.2 to 37.0 MD. The transmission of the antibiotic/metal resistance genes was evaluated between a total of 7 pairs of isolates. A higher transfer frequency (4.4 × 10(-1)) was observed among antibiotics, although a lower transfer frequency (1.0 × 10(-2)) was observed against metals in both the media from the entire site tested. According to exponential decay, the population of hospital wastewater declined in the following order across all sites: Site II > Site IV > Site III > Site I for antibiotics and site IV > site II > site I >site III for metal. Different metal and antibiotic concentrations have varying effects on the population. The metal-tolerant P. vulgaris from hospital wastewater was studied in the current study had multiple distinct patterns of antibiotic resistance. It could provide cutting-edge methods for treating infectious diseases, which are essential for managing and assessing the risks associated with hospital wastewater, especially in the case of P. vulgaris.202236523753
3318180.9997Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Antibiotic resistant bacteria (ARB) are a major health risk caused particularly by anthropogenic activities. Acquisition of antibiotic resistances by bacteria is known to have happened before the discovery of antibiotics and can occur through different routes. Bacteriophages are thought to have an important contribution to the dissemination of antibiotic resistance genes (ARGs) in the environment. In this study, seven ARGs (bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), mecA, vanA, and mcr-1) were investigated, in the bacteriophage fraction, in raw urban and hospital wastewaters. The genes were quantified in 58 raw wastewater samples collected at five WWTPs (n = 38) and hospitals (n = 20). All genes were detected in the phage DNA fraction, with the bla genes found in higher frequency. On the other hand, mecA and mcr-1 were the least frequently detected genes. Concentrations varied between 10(2) copies/L and 10(6) copies/L. The gene coding for the resistance to colistin (mcr-1), a last-resort antibiotic for the treatment of multidrug-resistant Gram-negative infections, was identified in raw urban and hospital wastewaters with positivity rates of 19 % and 10 %, respectively. ARGs patterns varied between hospital and raw urban wastewaters, and within hospitals and WWTP. This study suggests that phages are reservoirs of ARGs, and that ARGs (with particularly emphasis on resistance to colistin and vancomycin) in the phage fraction are already widely widespread in the environment with potential large implications for public health.202337315610
3381190.9997Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments. Antibiotic-resistant, facultative pathogenic bacteria are commonly found in surface water; however, the factors influencing the spread and stabilization of antibiotic resistance in this habitat, particularly the role of biofilms, are not fully understood. The extent to which bacterial populations in biofilms or sediments exacerbate the problem for specific antibiotic classes or more broadly remains unanswered. In this study, we investigated the differences between the bacterial populations found in the surface water and sediment/biofilm of the Mur River and the Drava River in Austria. Samples of Escherichia coli were collected from both the water and sediment at two locations per river: upstream and downstream of urban areas that included a sewage treatment plant. The isolates were subjected to antimicrobial susceptibility testing against 21 antibiotics belonging to seven distinct classes. Additionally, isolates exhibiting either extended-spectrum beta-lactamase (ESBL) or carbapenemase phenotypes were further analyzed for specific antimicrobial resistance genes. E. coli isolates collected from all locations exhibited resistance to at least one of the tested antibiotics; on average, isolates from the Mur and Drava rivers showed 25.85% and 23.66% resistance, respectively. The most prevalent resistance observed was to ampicillin, amoxicillin-clavulanic acid, tetracycline, and nalidixic acid. Surprisingly, there was a similar proportion of resistant bacteria observed in both open water and sediment samples. The difference in resistance levels between the samples collected upstream and downstream of the cities was minimal. Out of all 831 isolates examined, 13 were identified as carrying ESBL genes, with 1 of these isolates also containing the gene for the KPC-2 carbapenemase. There were no significant differences between the biofilm (sediment) and open water samples in the occurrence of antibiotic resistance. For the E. coli populations in the examined rivers, the different factors in water and the sediment do not appear to influence the stability of resistance. No significant differences in antimicrobial resistance were observed between the bacterial populations collected from the biofilm (sediment) and open-water samples in either river. The different factors in water and the sediment do not appear to influence the stability of resistance. The minimal differences observed upstream and downstream of the cities could indicate that the river population already exhibits generalized resistance.202438392909